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Flapping Wing Flight Dynamic Modeling

Benjamin Y. Leonard

(ABSTRACT)

Highly agile, hover capable �apping wing �ight is a relatively new area of study in engi-

neering. Researchers are looking to �apping �ight as a potential source for the next gener-

ation of reconnaissance and surveillance vehicles. These systems involve highly complicated

physics surrounding the �apping wing motion and unusual characteristics due to a hover re-

quirement not normally associated with conventional aircraft. To that end this study focuses

on examining the various models and physical parameters that are considered in various

other studies. The importance of these models is considered through their e�ect on the trim

and stability of the overall system. The equations of motion are modeled through a quasi co-

ordinate Lagrangian scheme while the aerodynamic forces are calculated using quasi-steady

potential �ow aerodynamics. Trim solutions are calculated using periodic shooting for sev-

eral di�erent conditions including hover, climb, and forward �ight. The stability of the trim

is calculated and examined using stroke-averaged and Floquet theory. In�ow and viscous ef-

fects are added and their e�ects on trim and stability examined. The e�ects of varying hinge

location and the inclusion of stroke deviation in the wing kinematics are also explored. The

stroke-averaged system was not found to be a direct replacement for the periodic system as

the stability was di�erent for the two systems. In�ow and viscosity were found to have large

e�ects on the stability of the system and models accounting for the two should be included

in future �ight dynamic models.
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Chapter 1

Introduction

1.1 Motivation

The Defense Advanced Research Project Agency (DARPA) de�nes a Micro Air Vehicle

(MAV) as an aircraft limited in all of its dimensions to 15 cm [4]. This size limitation

is meant to allow the vehicle to operate in a con�ned space such as those presented by an

urban canyon or building interior. While any type of aircraft could theoretically be adap-

ated to �t the MAV de�nition, rotor craft and �apping wing designs are particularly well

adapted for the high agility and maneverability requirements of this di�cult operating envi-

ronment. Further more, for concealment in plain sight, �apping wing designs are particularly

well-suited in that they can mimic designs we see in nature and thereby have the potential

to hide in plain sight. Of particular interest in demonstrating these capabilities are recent

developments in highly agile, hover capable, �apping-wing aircraft that mimic small �iers in

nature such as Aerovironment's Nano Hummingbird [5].

This particular study focuses on the di�culty of determining what models are most impor-

tant to consider when trying to accurately represent �apping wing dynamics. Consideration

is given to eventual control synthesis and calcuation of dynamic metrics such as performance,

stability, maneuverability, and gust response. To this end, various models such as viscous
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CHAPTER 1. INTRODUCTION

forces and in�ow, and physical parameters, such as deviation and hinge location are con-

sidered. These models are incorporated into an otherwise quasi-steady aerodynamic model

(integrated over the span using blade element theory) which is coupled with a rigid-body

quasi-coordinate Lagrangian scheme.

1.2 Literature Review

The literature review consists of three sections. The �rst deals with �ight dynamics and

equations of motion with an emphasis on those methods that have been applied to �apping

wing systems. The second section deals with the various aerodynamic models that have been

used on �apping wings. The third deals with stability and control.

1.2.1 Aerodynamics of Flapping Wing Systems

Fry et al. [6] examined the kinematics and aerodynamics of Drosophila �ight, speci�cally

rapid maneuvers, using high-speed infrared photography. The captured kinematics were

played through a dynamically scaled robot in order to measure the produced aerodynamic

forces. The maneuvers in question are described as saccades, fast turns that can involve

as much as ninety degree turns in less than �fty micro seconds. Results showed that the

mean forces generated by the fruit �y were fairly constant with respect to the body axes.

Instead, during maneuvers, the body orientation was changed in order to facilitate overall

acceleration (along with very slight changes in wing motion). The paper also examines the

assumption that smaller animals must overcome primarily viscous friction forces while larger

animals are dominated by inertial forces when accelerating or turning. Through analysis of

the time course data for the torque produced by the insect, it was concluded that the very

small fruit �y was not dominated by viscous friction forces but instead by inertial forces. It

is also stated that while the research was conducted on the fruit �y, the results are relevant

for nearly all insects in that inertial forces only become more important as size increases and

2



CHAPTER 1. INTRODUCTION

the turns observed were banked turns similar to those observed in larger insect species.

Continuing this work, in Fry [7] the body and wing kinematics of Drosophila �ies were

characterized through the use of high-speed video, lasers, and a dynamically scaled robot.

The motion was captured using high-speed cameras focused on a 0.5 cm3 area in a control

volume lit by infrared LEDs (which are not visible to the �ies and so do not disrupt their be-

havior). The robot was then used to `replay' motions captured by the video and measure the

aerodynamic forces caused by these motions. A U-shaped motion was observed in the wings

of the hovering �ies with no observed `clap and �ing' motion. Quasi-steady aerodynamics

were found to be able to account for nearly all of the behavior involved in hovering except

that there are discrepancies between measured and model data that indicate the presence

of unsteady mechanisms. The paper also details the comparison between tethered and un-

tethered �ight of the �ies and how the stroke pattern is severely disrupted by the tethering.

This refutes the historical methods of using tethered �ight as a proxy for hovering �ight,

instead showing that the tethering makes for di�erent stroke patterns and a signi�cant pitch

down moment. Fry proposes that this is an e�ect of sensory disruption. They conclude by

describing the balance necessary between �ight forces for stable hovering and the challenge

this produces with two high frequency wings. They propose that the complex nature of the

still poorly understood hinge may hold the key to permitting a limited number of muscles to

make the subtle changes in strokes necessary to control insect �ight. A table providing the

parameters and power numbers measured in the experiment is also provided as an important

resource.

Singh and Chopra [8] examine the aerodynamics of insect-based, biomimetic, �apping

wings in hover. A biomimetic �apping wing test mechanism was used to imitate insect

wing �apping. The mechanism was a passive-pitch bi-stable mechanism controlled by a

speed controller, pulse generator, and brushless motor. Due to vibration and inertial loads,

mounting the apparatus on a load cell did not provide very meaningful results. Instead, load

cells made of strain gages were mounted at the base of the wings to measure the moments

caused by the wings. The motion of the wings (pitch angle) was measured using a Hall sensor

3



CHAPTER 1. INTRODUCTION

(a magnet moving past the Hall e�ect sensor causes a relative charge). Inertial loads were

measured by running the mechanism in a vacuum chamber (90% vacuum). Low frequency

tests were run for wings I-III and results reported for wings II and III. Wing I and II were of

the same form (wing II had thicker Mylar) which was an aluminum frame around all edges

of the frame and the wing surface itself made of Mylar. Wing III was similar but the frame

did not continue around the trailing edge, but instead only around the leading edge and the

root. High frequency results were reported for wing III, and several tests were also carried

out for a series of lightweight wings that used carbon �ber frames rather than aluminum

frames. Results were also given for several of these light wings. The analytical model for the

forces accounted for translational and rotational circulation, the leading-edge vortex e�ects,

noncirculatory forces based on thin airfoil theory, starting vortex e�ects, and shed wake and

tip vortex e�ects. At low frequency wing III showed the most thrust (pitched about its 20%

chord location) and showed more thrust at a pitch angle of 45 degrees rather than 30 degrees.

When the frequency was increased to try and increase thrust the mass of the wing was shown

to have a signi�cant e�ect on the maximum possible frequency to which the mechanism could

drive the wing. It was also noted that the thrust showed a sudden drop at a frequency of

11.6 Hz (wing III). All wings showed an eventual drop at high frequency, possibly due to a

loss in noncirculatory thrust caused by elasticity. It was also noted that using a softer spring

to control the passive pitching caused a larger pitch variation that resulted in a larger thrust

at a smaller power consumption. Singh and Chopra propose that this passive mechanism

merits further study due to its mechanical simplicity and ease of implementation.

Dickinson et al. [2] discuss the interaction of three interactive mechanisms that enhance

aerodynamic performance. The three mechanisms are delayed stall, rotational circulation,

and wake capture. Delayed stall occurs during the translational portions of the stroke while

rotational circulation and wake capture occur during the stroke reversal. These rotational

mechanisms can modulate the direction and magnitude of �ight forces during steering ma-

neuvers. When insect wings are placed in a wind tunnel and tested over the range of ve-

locities normally encountered the measured forces are much lower than those required for

4



CHAPTER 1. INTRODUCTION

�ight. They also discuss one of the �rst unsteady e�ects to be identi�ed: clap and �ing.

This phenomenon precedes pronation and hastens the development of circulation during the

downstroke. Clap and �ing is not present in all insects and thus cannot be the solution to

the lower than required forces presented in the wind tunnel tests. Delayed stall represents

a �ow structure on the leading edge of a wing that can generate circulatory forces greater

than those experienced under steady-state conditions at high angles of attack. The 3D force

coe�cients are greater than those of the transient 2D steady-state values which con�rm the

presence of some transient unsteady e�ect such as delayed stall. Although the translational

values with the delayed stall e�ects match the magnitude of the measured force near the

middle of each half stroke they do not match the values during force reversal. A possible

explanation for the peaks at the end of each half stroke could be a combination of rotational

e�ects and wake capture. Rotational e�ects are similar to those e�ects experienced by a spin-

ning baseball; air is pulled within the boundary layer and serves as a source of circulation.

The wing must rotate to be in the proper position for each stroke. This rotation, however,

can be altered to change the reaction forces caused by the rotational e�ects. If the wing �ips

early (before changing direction) then the resulting force should be upward. If the �ip is late

then the resulting force would be a downward force. If the �ip spans both half strokes then

the resulting downward and upward forces cancel. Therefore proper timing of wing rotation

can add extra lift beyond that of just delayed stall. Delayed stall, however, does not account

for the large positive transient that develops immediately after the wing changes direction.

The researchers propose that wake capture is the other rotational e�ect that makes up the

di�erence between the translational e�ects and the rotational e�ects. In wake capture the

wing bene�ts from the shed vorticity of the previous stroke. The vorticity generated by

the previous stroke increases the e�ective velocity of the next stroke and increases the force

production. To support this hypothesis, the authors tested the force produced by halting the

wing at the end of the half stroke. The results showed that wing generates force for several

hundred milliseconds following the end of the half stroke. Again, the rotation timing has a

similar e�ect to that of delayed stall. The authors conclude that the wing should rotate in
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advance of the reversal so that it generates circulatory forces at the end of each stroke, and

increases the strength of the wake and ensures proper orientation to take advantage of the

wake. Insects alter this timing in order to aid in control. For instance the rotation timing

on one wing can be altered to create more drag and aid in turning.

Zbikowski [9] discusses advances in �uid dynamics as applied to insects and micro air

vehicles (MAVs). These new concepts are applied to two methods of aerodynamic modeling

of an insect like wing in hover. One of the unsteady aerodynamic phenomena Zbikowski

discusses is a spiraling leading-edge vortex. This vortex is bound, remaining on the wing

during the half cycle throughout pitching, plunging, and sweeping before being shed at the

end of the stroke when the wing �ips. This is very similar to Dickinson's delayed stall

e�ect. The other e�ects included those of wing pitching, plunging, and sweeping present at

all times and wing interactions with its own wake (Dickinson's wake capture e�ect). The

�ow was assumed incompressible, low Reynolds number, and laminar with a rigid, thin wing

of symmetric section. Zbikowski argues that these assumptions are well supported except

for lack of �exibility in the wing which he adopts for simplicity. He proposes that insects

deliberately force separation at the leading edge to gain vortical lift and shedding the vortex

at the end of the half stroke using the sudden wing �ip. The pitching, plunging, and sweeping

nature of the wing are similar to aspects of helicopter blades but with the critical di�erence

that MAV wings consistently �ap with angles of attack greater than 20 degrees without having

the vortex shed and losing lift. In insect like �apping the separation occurs at the beginning of

the motion and generates stable lift (from the vortex) throughout the half cycle. The essence

of Zbikowski's framework is to account for both the leading-edge vortex and the other part of

the �ow. The non-vortical part of the �ow was treated with unsteady aerodynamics similar

to those used in helicopter blades with attached �ow, while the bound leading-edge vortex

was considered a non-linear phenomenon and had to be treated with methods di�erent from

the thin airfoil theory. Using the circulation approach allows for the use of just a single

framework since both the linear and nonlinear contributions can be handled consistently.

Using the velocity potential necessitates using a second correction to deal with the nonlinear
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components (in this case Polhamus's leading-edge suction analogy). The circulation approach

uses a methodology based on linear, thin-airfoil theory applied to unsteady wing motions.

The linear portions of the aerodynamics are handled with classical von Karman-Sears Theory

and the nonlinear portions with McCune-Tavares nonlinear extensions. The velocity potential

approach is based upon the theories of Theodorsen, Wagner, and Garrick supplemented by

the Polhamus leading edge suction analogy. Zbikowski argues that the simpli�cations made

in his paper are necessary now in order to further engineering design so that fundamental

analyses will be furthered, leading to production of a better design.

Nagai et al. [10] detail experimental and numerical studies on the aerodynamic character-

istics of an insect in forward �ight (speci�cally the �apping wing). Much like in Dickinson's

work, the unsteady aerodynamic forces and �ow patterns were measured using a scaled me-

chanical model but in this case in a water tunnel instead of mineral oil. The wing and

motions were based on the �apping wing of a bumblebee and the results were compared to

a 3D Navier-Stokes code. The aerodynamic mechanisms of the wing, such as delayed stall,

rotational e�ect, and wake capture, were examined in detail for forward �ight. The motions

played through the model were `simple trapezoidal-type' motions based on data from Dudley

and Ellington [11]. The mechanism was similar to that of Dickinson's in that the mechanism

provided the three degrees of freedom and in the cases of forward �ight the water was moved

through the tunnel at 0.02 to 0.2 m/s. Because a bumblebee moves its hind and forewings

together and not independently, the planform chosen for this wing encompassed both and

was made of acrylic surrounded by an aluminum frame. Forces were measured at the root by

strain gages in the typical fashion. For �ow visualization the wing was slightly di�erent in

that it had no aluminum frame so that light could pass through the entire wing and it was

made thicker to retain resistance to bending. Comparisons between the two wings showed 2%

or less di�erence in aerodynamic characteristics. A laser shining through the side wall of the

water tunnel was used as a light source and two cameras placed below the tunnel recorded

the �ow patterns. The three dimensional Navier-Stokes code has been validated by Isogai

et al. [12, 13] in relation to the time histories (hovering �ight) of aerodynamic forces for a
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dragon�y. Three cases were chosen for validation in this experiment, a course grid, a �ne

grid, and a �ne time-step case. All three cases were in good agreement with the experimental

results. Flow patterns were also compared between the experimental and numerical results

and again agreement between the two was good. There were small quantitative di�erences

throughout the comparisons that were attributed to the di�erences in shape between the

numerical and experimental wings. The experimental wing had a thickness as described pre-

viously with a rectangular leading edge while the numerical model had a sharp leading edge

with zero thickness. This leads to a larger leading edge vortex in the experimental case than

in the numerical one which may account for the di�erence in quantitative results.

Sane and Dickinson [14] compared instantaneous force measurements from a dynamically-

scaled mechanical �apping wing to quasi-steady estimates in order to study rotational forces

for a range of angular velocities and axes of rotation. It was found that the rotational

coe�cient varied as expected with axis of rotation but also varied with angular velocity (not

expected based on theoretical models). The standard quasi-steady model was then modi�ed

to include rotational, translational, and added-mass e�ects. By subtracting this new quasi-

steady estimate from the measured forces the aerodynamic e�ects due to wake capture were

isolated. This paper also gives a brief description of what makes up each of the e�ects added

to the standard quasi-steady estimate.

Peters et al. [15] extend classical thin airfoil theory by allowing for large frame motion

of the wing and small deformations (expanded into Chebychev polynomials) relative to large

frame motion (in particular for rotorcraft analysis). The theory itself is formulated in terms

of the de�ections and generalized forces within the frame and is based on transformations of

the traditional potential �ow equations. The equations are broken down into mass, damping

and sti�ness matrices, making coupling with �nite elements or modal analysis convenient.

Also the unsteady components of the aerodynamics are encompassed in a completely separate

wake model making the theory �exible in that it can be changed to match the physics rather

than relying on a constant unsteady model such as the �at wake found in Theodorsen's

theory. This allows for a theory somewhere in between quasi-steady blade element theories
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and CFD analyses in terms of accuracy and computation time. Peters et al. validated the

theory against those of Theodorsen [16], Garrick [17], Loewy [18], Issacs [19, 20], Greenberg

[21], Wagner [22], and von Karman [23] as well as experimental cases.

Pesavento and Wang [24] solved the two dimensional Navier-Stokes equations in relation

to a piece of free falling paper at Reynolds number near 103. In contrast to an airfoil

governed by the Kutta Joukowski condition which normally experiences lift proportional to

velocity squared, the lift was found to be dominated by the product of the linear and angular

velocities. In comparing the two models, the Joukowski model was modi�ed to incorporate

a lift-drag polar but this still did not exhibit the cusplike turning points with elevation of

the center of mass. This di�erence was further investigated through decomposition of forces

into added-mass and circulation terms and the Navier-Stokes equations are found to provide

an extra instantaneous forcing term in the circulation due to the angular velocity.

Anderson et al. [25] continued the earlier work in [24], this time experimentally quantify-

ing the trajectories of falling plates. The trajectories were captured using high-speed digital

video in order to determine instantaneous accelerations from which to deduce the �uid forces.

These values were compared to direct solutions of 2D Navier-Stokes equations. Again the

�uid circulation was found to be dominated by a rotational term proportional to the angular

velocity of the plate, unlike the lift typically found for an airfoil at an angle of attack. The

torque was also found to be small in comparison to that normally found on an airfoil at a

�xed angle of attack. By varying Reynolds number, dimensionless moment of inertia, and

the thickness to width ratio of the plate, the dynamics varied from �uttering, tumbling, and

chaotic motion. Variations in initial conditions provided a period of brief transients followed

by periodic �uttering. These results matched well with the numerical results previously

described in [24].

Berman and Wang [26]continued previous work done by Wang and others in [24, 25] by in-

vestigating aspects of hovering insect �ight. Optimal wing kinematics that minimized power

usage while constrained to provide enough lift for hover (maintain time-averaged constant

altitude over a �apping period) were determined using a hybrid optimization that combines
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aspects of genetic and gradient based optimizers. The wings examined in this study were

considered as rigid bodies with three rotational degrees of freedom and are based on the

wings of a fruit �y, bumblebee, and hawkmoth. In order to allow for the many cost func-

tion evaluations and detailed sensitivity analysis that go into the optimization procedure the

quasi steady aerodynamics described in [24] were utilized. The results of the analysis pro-

vided kinematics which were qualitatively and quantitatively similar to observed data ([7, 27]

among others). The data also showed a constant leading edge throughout the stroke (trailing

edge never lead) being advantageous due to interactions between inertial and aerodynamic

power.

Stanford et al. [3] examined the e�ects of several parameters on aeroelastic hovering

motions of a �exible �apping wing. The parameters used in this study were wing shape,

structural composition, and the kinematic motions, while the criteria for performance was

the peak power required for the stroke subject to kinematic constraints. Because this work

was completed at the partner organization Air Force Research Laboratory (AFRL) the aero-

dynamics of this study were of particular interest for comparison and validation. The aerody-

namics consisted of a quasi-steady blade element model and a higher-order Navier Stokes �ow

solver (OVERFLOW-2.1). The quasi steady aerodynamics were based on those of Berman

and Wang [26] and di�er from those in this study due to the inclusion of viscous forcing

terms as well as empirically determined forcing coe�cients. With these terms included the

quasi-steady aerodynamics were able to show good agreement with the CFD model despite

the large di�erence in computational time and model �delity.

Oppenheimer et al. [28] developed an aerodynamic model from blade element theory

(not including unsteady e�ects) based on the work of Sane and Dickinson [14]. The vehicle

considered in the work is similar to the Harvard RoboFly except that the wings are indepen-

dently actuated using two di�erent piezo electric actuators. The blade element theory is used

to calculate instantaneous and stroke-averaged forcing and moments for use in control of the

aircraft. The position of the wing is controlled using oscillators that change once per wing

beat cycle so as not to invalidate the stroke-averaged model. A speci�c technique, Split-Cycle

10



CHAPTER 1. INTRODUCTION

Constant Period Frequency Modulation with Wing Bias, is introduced for tracking the wing

motion that provides a high degree of control without actively controlling the angle of attack.

Particularly the frequency of the wing upstroke and downstroke can be varied to generate

a stroke averaged drag and a wing bias added to provide pitching moment control all while

utilizing only a pair of actuators. Using the frequency modulation to control x and z forcing

and the wing bias to control moments and y forcing two actuators can provide agile insect

�ight in untethered conditions.

1.2.2 Flight Dynamics of Flapping Wing Systems

Bierling [29] presents a �ight dynamic model for �apping wing insects and/or MAVs. It

assumes a rigid-body fuselage with wings that are attached at a single rotating joint (that

move with a prescribed motion). The aerodynamic model used in his analysis is a quasi-

steady model based on the work of Sane and Dickinson [30, 14]. A spline interpolation was

used to approximate the observed data for the wing kinematics and this data was used to

generate the �nal equations of motion (added to the nonlinear equations already derived

from the Newton-Euler equations). A trim algorithm was used to calculate the periodic

steady-state and Floquet analysis used to calculate �ight dynamic modes and stability to

small perturbation. The stability estimate from Floquet analysis were close to those from

the stroke-averaged analysis except for slight di�erences in the lateral eigenvalues and the

hovering case. This means that the quasi-steady approach may be used for simpli�cation

of the dynamics when necessary. In general the results pointed towards unstable or slightly

unstable eigenvalues necessitating active control but also providing opportunities for high

maneuverability. Bierling also concluded that the close agreement between the quasi-steady

analysis and the Floquet results might be due to the low wing mass of the Drosophila model

and that larger wing masses would create larger di�erences in the two analyses. The results

neglect certain unsteady a�ects as part of the quasi-steady assumption and the results are

only valid for the Drosophila wing with corresponding �apping frequency and Reynolds

number.
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Taylor et al. [31] examine the �ight dynamics characteristics of a desert locust. The

paper begins with a brief discussion of �apping �ight dynamics in general and concludes

that it is somewhat similar to forward rotary �ight due to oscillatory mass and forcing. The

authors discuss the distinction between open- and closed-loop dynamics as pertaining to

insects. Insects in general have open-loop dynamics that are not easily separated from the

�ight mechanics. In general, blocking any kind of feedback usually results in a stop in �ight.

The authors go on to discuss the characteristics of the desert locust including its wings and

its �ight sensors. They also provide analogous aircraft sensors for many of the locust sensors,

for example, the wind sensitive hairs on the head of the locust act as angle of attack sensors

and side-slip vanes. The Oxford Zoology Department's low-speed closed-loop wind tunnel

was used to measure �ight dynamics parameters for three di�erent desert locusts, while two

others were measured in an open-throat blower tunnel. Linear time-invariant (LTI) and

nonlinear time-periodic (NLTP) models for the �ight dynamics were both analyzed. The

models formulated by the authors predicted that locust �ight would be unstable without

visual feedback to the control system. The NLTP method was also discussed as a better

solution than the LTI model due to the NTLP model's stronger forced oscillatory character.

The authors also suggest that because the MAVs as dictated by DARPA will be on the same

size order as the desert locust, a time-periodic modeling method will be necessary to capture

their �ight dynamics as well.

Meirovitch and Tuzcu [32] formulate the equations of motion for a �exible aircraft, inte-

grating together dynamics, structural vibrations, aerodynamics, and controls. Of particular

interest to this thesis was the formulation of the dynamic equations of the aircraft, treated

as a multi-body system using quasi-coordinates. The motions of the body are broken into

six degrees of freedom (based on the body axes attached to the undeformed fuselage) and

combined with deformations of the �exible components. Further detail on the equations of

motion in terms of quasi coordinates is provided in Meirovitch [33] and discussed later in

this thesis.

Deng et al. [34] worked on mathematical modeling of �apping �ight MAVs in the inch size
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range. In this particular work they worked on the full system dynamic models, with particular

emphasis on their di�erences with respect to traditional �xed and rotary wing MAVs. The

particular models included the wing-thorax dynamics, aerodynamics (full �apping model at

low Reynolds number), body dynamics, and a biomimetic sensing system. The mathematical

models were derived from analytic solutions, empirical models, and biological data. These

are integrated into algorithms for wing aerodynamics, body dynamics, actuator, dynamics,

external environment, and �ight control, which together make up the Virtual Insect Flight

Simulator (VIFS). The aerodynamics are those of the Sane and Dickinson [14] though wake

capture is neglected. The sensory system is novel in that it neglects traditional �ight sensory

techniques in favor of biomimetic sensors. Ocelli are used to estimate roll and pitch angle,

while a magnetic compass estimates yaw. Halteres are used for angular velocity sensing and

optic �ow sensors (much like those described in Humbert et al. [35]) are used for navigation

and to avoid impact. The reason given for these novel systems is that they would be lighter

and draw less power than conventional systems, though currently they are only proposed

and not actually in use.

Faruque and Humbert [36] developed a reduced order model for the longitudinal hovering

dynamics of a �y-like insect. They utilized a quasi-steady aerodynamic model �rst utilized by

Dickinson's group at Cal Tech (averaged for each period to a time invariant model) extended

by perturbation states from hover (to help understand sensing and feedback requirements

when moving away from stable �ight) and rigid body equation of motion. They then used fre-

quency based system identi�cation to solve for the transfer functions from the control inputs

to the states. The heave dynamics were found to be decoupled from the forward and pitch

motions and use of the haltere system stabilized the vehicle which otherwise su�ered from

an unstable oscillatory mode (in agreement with previous CFD studies). This further rein-

forces the idea of passive stabilization mechanisms which help to reduce the computational

requirements of these highly weight and power constrained vehicles.

Continuing work by Faruque and Humbert [37] examined the lateral motion about hover.

The study continued to examine passive stability mechanisms and their implications for
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�ight control and stability. Using the previously described analysis, the lateral motion about

hover was shown to have two stable poles and two lightly damped nearly unstable poles.

One of the poles (stable) was uncoupled and corresponded to the yaw motion of the vehicle

while the others were coupled roll/sideslip motions. Again the motions were found to have

inherent passive damping mechanisms that help to stabilize the vehicle without control input.

The designer can leverage these phenomena and reduce the burden placed on the vehicle

computationally, reducing power, size, and weight issues.

Sun and Xiong [38] studied the longitudinal �ight stability of hovering bumblebees us-

ing eigenvalue analysis to solve the equations of motion. The aerodynamic derivatives

necessary for the analysis were computed using computational �uid dynamics (CFD). For

longitudinally-disturbed motion they identi�ed three natural modes though the instabilities

arising from these modes were all such that the growing time was much greater than the wing-

beat period and as such the bumblebee would have plenty of time to adjust wing motion.

Sun and Xiong assumed the bee to be a rigid body (wings also in�exible) with six degrees

of freedom and the �apping wings were simpli�ed by calculating the wingbeat average forces

and moments (per stroke). The inertia e�ects of the wings were also neglected (justi�ed by

calculating the wings' mass to be about 0.52% of the total insect mass). In this particular

case, the equations of motion were linearized by approximating the body's motion as a series

of small deviations from the reference condition (steady, symmetric �ight). Sun and Xiong

also state that near hover the body aerodynamic forces are minuscule as compared to those

of the wings and therefore can be neglected without a�ecting the aerodynamic derivatives

signi�cantly. The eigenvalue analysis yielded one unstable oscillatory mode and two stable

modes (subsistence modes). Sun and Xiong also explain the physical meaning of these mo-

tions and how the bee could easily overcome the instability that arises from the unstable

mode.
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1.2.3 Control of Flapping Wing Systems

Hamel and Jategaonkar [39] present a history of parameter identi�cation in �ight mechanics.

It details the development of methods used in the past as well as currently. It also details

the di�culties in determining aircraft parameters and how those di�culties have changed

over the course of time. Some of the early methods presented were the �rst attempts as

determining aerodynamic forces and included dynamic �ight tests, the Longitudinal Oscilla-

tion Method, the Pulse Method of Dynamic Response Testing, the Time-Vector Method and

Analog Matching. Most of these methods have become outdated, even at the time of the

publication of this paper, and Hamel and Jategaonkar go on to present more modern meth-

ods of parameter estimation. Most of these methods were brought about with the advent

and increase in power of computers, especially the personal computer. They also discuss

four important aspects of parameter identi�cation in modern methods, namely: design of

the control input shape, selection of instrumentation and �lters for high accuracy, de�nition

of the structure/mathematical model, and proper selection of the time or frequency domain

identi�cation method. Each of these areas are discussed in depth and speci�c examples given.

There is also a discussion on system identi�cation applied to related topics. The paper goes

on to conclude that the current techniques presented in the paper provided su�ciently ac-

curate results and had been tested thoroughly enough to be considered powerful tools not

only for research but also for industry. It also hypothesizes that the area of parameter iden-

ti�cation will continue on limited only by the imagination and innovation of analysts, and

motivated by the need to better understand aerodynamic phenomena.

Humbert et al. [35] deals with the nature of insect sensory feedback control and how it

could be implemented in MAVs. The primary mechanism most desirable in insect sensory

motor interaction is that of sensorimotor convergence. The output of sensory neurons is

conducted directly to motor control centers rather than central processing areas for faster

feedback than possible by �rst processing and then sending to motor centers. The visual

sensory output focused on by this paper is optic �ow, which is essentially the derivative of the

objects in the optic �eld. The insect's eyes process the velocity of the objects in its optic �eld
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and also their proximity. This minimized data is passed to the motor control centers for quick

reactions and maneuvering. This is what gives insects their characteristic maneuverability

and quick reaction times. Ideally, this data would also include the spatial structure and

distribution of objects in the �ow �eld to aid in navigation. Humbert et al. go on to

describe the process of Wide-Field Integration (WFI) processing of ideal planar optic �ow,

including characterization and interpretation of WFI outputs. They also describe how output

feedback of WFI sensory information can be used to create pitch altitude stability and terrain

following capability (demonstrated using planar rotorcraft dynamics). It is concluded that

terrain following applications to date have only utilized a small amount of the information

available from optic �ow. It would be possible to signi�cantly improve terrain following,

closed loop stability, and performance through proper implication of optic �ow sensing. They

demonstrate a methodology of stability through optical �ow data with a minimum of sensory

information from other methods. For instance only a measurement of forward speed was

necessary to achieve zero steady state error in tracking altitude reference, and only pitch

orientation necessary for hover equilibrium.

Hedrick et al. [40] discuss passive yaw stabilization in a wide range of �apping �iers.

They propose that rather than actively damping out oscillations and perturbations, �ying

organisms use passive stability which damp out angular velocity through a methodology

the authors term �apping counter torque (FCT). Their model predicts similar damping on

a per-wingbeat time scale for isometrically scaled animals. They show that animals may

specialize in both maneuverability and stability despite the normal assumption that these

two quantities run counter to each other. They also propose that other mechanisms besides

yaw could be explained by this phenomenon. The particular turn studied in this paper

was a low-speed yaw turn of greater than or equal to 60 degrees. This turn was described

as having an angular acceleration phase (with active control) and an angular deceleration

phase(with either passive or active control). Traditionally larger animals such as birds are

modeled as requiring active deceleration to overcome their larger inertia due to mass while

smaller animals such as insects are modeled with signi�cant �uid drag, allowing for passive
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deceleration. Considering an animal in hover or low speed �ight, damping from wing motion

arises from drag created by the �apping motion. When the animal is in full body rotation

(yaw), net outside wing velocity is increased on the downstroke and net inside wing velocity

increased on the upstroke. This gives rise to a torque that slows the animal's rotation

(on both strokes the net torque due to force imbalance acts to slow the rotation). The

authors refer to this torque as FCT because it is �apping induced and acts counter to the

already present rotation. Hedrick et al. then go on to develop an equation to model FCT

and another equation for active deceleration through torque generation. They use the two

equations to predict rotational deceleration dynamics and compare these predictions to actual

measurements of yaw turning in seven species of �ying animals over six orders of magnitude of

mass. The FCT model was able to accurately predict yaw deceleration over all seven species

(four invertebrate and three vertebrate) while the active model was not able to accurately

predict the deceleration rate measured in these species. While active control is possible, the

authors contend that the primary mechanism in yaw turn deceleration is passive. Due to these

results, maneuverability and stability, often cast in opposition to each other, are more readily

optimized together. Essentially, enhancing some factors that enhance maneuverability would

also increase FCT, itself an active form of passive stability. One such factor discussed in this

paper is wingbeat frequency. Increasing frequency would allow for greater maneuverability

and active stabilization as well as increasing FCT through greater force production. This

does, however, come with the cost of increases in power requirements to achieve these higher

�apping frequencies. The authors also note that while FCT does provide open loop stability,

reducing neuromuscular and sensory requirements, it does not eliminate these as FCT results

in asymmetric forcing in the wings which suggests neurological input to achieve symmetry

of the �apping motion. The authors also discuss the fact that fast forward �ight is also

likely in�uenced by FCT but pitching and longitudinal dynamics are known to be inherently

unstable in open loop conditions and require active control.

Doman et al. [41] developed a method of controlling a �apping wing micro air vehicle

through varying the velocity pro�les of each wing. The rotation of the wing is a passive mech-
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anism while the stroke motion is actuated using what is termed a Split-Cycle Constant-Period

Frequency Modulation. This was accomplished through the use of a split cycle parameter

that shifted the peak of the �apping cycle while maintaining the same period. Through the-

oretical analysis and simulation this method of control is shown the be capable of of control

over the vertical and horizontal body forces as well s the rolling and yawing moment when

just controlling each wing's �apping frequency and the split cycle parameter. By introducing

a bob-weight pitching moment can also be controlled. The controller is implemented using

derived sensitivities of cycle-averaged forces and moments (from changes in the wing beat

kinematic parameters). These sensitivities are used to formulate a cycle-averaged control law

that successfully stabilizes two di�erent models, one using blade-element theory and another

based on an empirical unsteady aerodynamic model derived from experiments.

Liu et al. [42] developed a computational framework to provide future guidelines for MAV

design. The framework integrated aerodynamics, �ight dynamics, structural dynamics, and

�ight stability and maneuverability applied to hawkmoth and fruit �y models. The aero-

dynamic model was a fully unsteady Navier-Stokes grid solver coupled to a �nite element

solver to account for the large deformations of �exible wings (results provided for both rigid

and �exible wings). The �ight dynamic model is a six-degree-of-freedom set of dynamic

equations (Newton-Euler scheme) with translation described in the inertial frame and rota-

tion described in the body frame. In the end, all of these are coupled through a non-linear

coupling model and simulated in order to aid in analysis of bio-inspired �ight.

Continuing work from [34], Deng et al. [43] present research on �ight control algorithms

inspired by the top-down architecture of real insects in order to try and preserve high per-

formance aspects despite limited computing power. The hierarchical nature of the model

allows for modular construction of the controller, with each module responsible for its own

particular task. The independent nature of each module allows for later improvement with-

out redesign of the entire system. The main levels considered are the navigation planner, the

�ight mode stabilizer and the wing trajectory controller. The navigation planner uses data

from sensors and commands to choose the sequence of �ight modes necessary to achieve the

18



CHAPTER 1. INTRODUCTION

mission and navigate the terrain around the vehicle. These �ight modes are passed to the

�ight mode stabilizer which uses inputs from the biomimetic sensors described in Deng [34] to

stabilize the various �ight modes. It then chooses the necessary forces and torques to achieve

this stable con�guration and sends them to the wing trajectory controller which chooses the

appropriate input voltages for the actuators. The particular advances in this work, at that

time, came in the form of the approximation of the time varying aerodynamics as a time

invariant system using averaging theory (through assuming the wing-beat frequency is much

higher than that of the body motion, meaning that only the mean forces and moments over

one aerodynamic period would signi�cantly a�ect the body dynamics) and in the use of a

biomimetic parametrization (such as timing of rotation, stroke angle amplitude, stroke angle

o�set, etc) of the individual wing paths. These simpli�cations allow the controller to take

take data from on board sensors and voltage inputs to the wing actuators and control the

system, without the complication of the controller needing to know the exact aerodynamic

model or accurate vehicle morphological parameters.

Oppenheimer et al. [44] use their work from [28] and develop a control strategy to

allow the vehicle to hover stably using two wing actuators controlling the angular position

of the wing in the stroke plane and a bob weight to move the vehicle center of gravity.

The Split-Cycle Constant-Period Frequency Modulation technique is used to generate non

zero stroke averaged rolling and yawing moments while the bob weight generates pitching

moments and controls translation. The bob weight had to be included as using the Split-

Cycle Constant-Period Frequency Modulation technique to generate pitching moments also

generated vertical forcing and rolling moments whereas the bob weight could generate the

pitching moment independent of other forcing. Expressions for the control derivatives due

to variations in the wing beat frequencies, split cycle parameters, and movement of the

bob weight are given. Using the stroke-averaged aerodynamic model, a �ight control law is

generated and then applied to the time varying dynamic model to demonstrate applicability

of the stroke averaged model.
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Chapter 2

Equations of Motion

In this chapter the equations of motion are derived using quasi coordinate form of the typical

Lagrange's equations. The purpose and uses of quasi coordinates are described along with

how they are applied to this particular system. The changes to the Lagrange's equation due

to the use of quasi coordinates rather than the usual general coordinates are also presented

with more detail available in Meirovitch [33]. This is followed by a formulation of the kinetic

and potential energy for use in the modi�ed Lagrange's equations (along with the virtual

work due to the non-conservative forces). The Lagrange's equations are then fully formulated

and transformed into a state space form for ease of use. The wing kinematics used in this

system are also described, followed by a check of the linear and angular momentum due to

only the inertial loading. The actual physical quantities used to describe this system are

provided in Section 5.1.

2.1 Quasi Coordinates

Quasi coordinates are a set of independent coordinates that describe a system uniquely. In

the case of a rigid system these coordinates are often those that describe the translation of

the body origin and the rotation of the reference axes [33]. In the case of this thesis these
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Figure 2.1: Flapping �ight system

coordinates are the velocity vector and position vector of the body frame, b, relative to an

inertial frame, i, and the angular velocities and angles of the body frame relative to the

inertial frame (as described below in Equation 2.1 through Equation 2.4). These coordinates

are described as quasi coordinates because the velocities can not be directly integrated to

obtain positions/angles.

Figure 2.1 illustrates the system investigated in this thesis. The system is described by

several frames including the inertial frame (center at origin, O), i, the body frame (center at

body center of mass, B), b, the stroke frame, s, and the wing frame (center at wing center

of mass, W ), w. Using these frames the quasi coordinates can be described as follows:

{irB} = {ixB,i yB,i zB}T (2.1)

{ϕb} = {Ψb,Θb,Φb}T (2.2)
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{bvB} = {buB,b vB,bwB}T (2.3)

{bωb} = {bpb,b qb,b rb}T (2.4)

Here the left subscript denotes the reference frame the variable is written in while the upper

right superscript denotes the point(s) or frame being referenced.

In order to relate the velocities and angular velocities to the position and angles one must

�rst take into account the rotation between the body and inertial frame through the Euler

angles described in Equation 2.2. This is a simple 3-2-1 rotation giving rise to the rotation

matrix:

[Tbi] =


cos Ψb cos Θb sin Ψb cos Θb − sin Θb

cos Ψb sin Θb sin Φb − sin Ψ cos Φb sin Ψb sin Θb sin Φb + cos Ψb cos Φb cos Θb sin Φb

cos Ψb sin Θb cos Φb + sin Ψb sin Φb sin Ψb sin Θb cos Φb − cos Ψb sin Φb cos Θb cos Φb


(2.5)

and the position and angles are then related to the velocities and angular velocities by:

{iṙB} = [Tib]{bvB} (2.6)

{iϕ̇b} = [Ebi]
−1{bωb} (2.7)

where Ebi is the matrix that relates the body angular rates and the time derivatives of the

Euler angles. The derivation of this matrix can be found in the appendix to Bierling [1].

[Ebi] =


− sin Θ 0 1

sin Φ cos Θ cos Φ 0

cos Φ cos Θ − sin Φ 0

 (2.8)

For convenience a new plane is de�ned, the stroke plane, in which the majority of the

�apping motion takes place. This plane is explained by Ellington [27] as the plane de�ned

by the wing bases, that is, the root of the wing and the wing tip at its forward and rearmost

points. This de�nition also allows for a di�erentiation of the stroke plane for each wing

which could be necessary for control and maneuvering as shown by Fry [6]. The stroke plane
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Figure 2.2: Rotation from the stroke frame to the wing frame[1]

is de�ned by a 2 rotation about the body y axis through the angle δr or δl (depending on

whether it is the right or left wing). Thus the rotation matrix from the body to the stroke

frame is:

[Tsb] =


cos δ 0 − sin δ

0 1 0

sin δ 0 cos δ

 (2.9)

The wing frame is then de�ned relative to the stroke frame by three Euler angles, namely

the stroke angle κ, the rotation angle τ , and the deviation angle µ. The rotation itself is a

3-1-2 rotation through κ then µ and �nally τ as shown in Figure 2.2. The rotation matrix

from the stroke frame to the wing frame is therefore:

[Tws] =


− sinκ sinµ sin τ + cosκ cos τ cosκ sinµ sin τ + sinκ cos τ − cosµ sin τ

− sinκ cosµ cosκ cosµ sinµ

sinκ sinµ cos τ + cosκ sin τ − cosκ sinµ cos τ + sinκ sin τ cosµ cos τ


(2.10)

The angular velocity of the wing frame and relative to the body frame is given by the

sum of the angular velocity of the stroke frame relative to the body frame and the angular

velocity of the wing frame relative to the stroke frame (details of this derivation are given by
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Bierling [1]):

{ωbw} = {ωbs}+ {ωsw} (2.11)

The angular velocity of the stroke frame relative to the body frame is simply:

{sωbs} = {0, δ̇, 0}T (2.12)

while angular velocity of the wing frame relative to the stroke frame is given in both frames

by:

{sωsw} =


−τ̇ sinκ cosµ+ µ̇ cosκ

τ̇ cosκ cosµ+ µ̇ sinκ

τ̇ sinµ+ κ̇

 {ωsw} =


−κ̇ sin τ cosµ+ µ̇ cos τ

κ̇ sinµ+ τ̇

κ̇ cos τ cosµ+ µ̇ sin τ

 (2.13)

Taking the time derivative yields the following vector which will be needed later in the

derivation of the equations of motion and the aerodynamic model.

{wω̇sw} =


−κ̈ sin τ cosµ− κ̇τ̇ cos τ cosµ+ κ̇µ̇ sin τ sinµ+ µ̈ cos τ − µ̇τ̇ sin τ

κ̈ sinµ+ κ̇µ̇ cosµ+ τ̈

κ̈ cos τ cosµ− κ̇τ̇ sin τ cosµ− κ̇µ̇ cos τ sinµ+ µ̈ sin τ + µ̇τ̇ cos τ

 (2.14)

2.1.1 Quaternions

Quaternions represent an alternative to the traditional Euler angle approach for equations of

motion. Utilizing four parameters instead of three, quaternions avoid the gimbal lock problem

that Euler angles exhibit as the pitch angle approaches ninety degrees. However, quaternions

also exhibit the disadvantage of providing less physical insight due to their abstract nature.

In this study quaternions are de�ned as follows:

q̄ = q0 + q1i+ q2j + q3k (2.15)

The rotation matrix from the body frame to the inertial frame (and visa versa) as well as

the kinematic equations can be written in terms of quaternions as described in [45].
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Tbi =


q20 + q21 − q22 − q23 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)

2 (q1q2 − q0q3) q20 − q21 + q22 − q23 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) q20 − q21 − q22 + q23

 (2.16)

˙̄q =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 bω
b (2.17)

2.2 Lagrange's Equations for Quasi Coordinates

The derivation of the equations of motion is based on the standard Lagrange's equations.

These are usually derived from Hamilton's principle and are valid for a set of generalized co-

ordinates. As this is a well established derivation, it will not be repeated here but more detail

is provided in Meirovitch [33]. Typically the standard Lagrange's equations are expressed as:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk k = 1, 2, ..., n (2.18)

where L is the Lagrangian of the system (di�erence of the kinetic and potential energy),

qk are the generalized coordinates, and Qk are the generalized (typically non-conservative)

forces.

The system investigated in this thesis is described, however, by a set of quasi coordinates,

necessitating that a di�erent form of Lagrange's equations be used. Lagrange's equations

as applied to quasi coordinates are derived by Meirovitch [33]. The general form of these

equations is as follows:

d

dt

{
∂L̄

∂ω

}
+ [β]T [γ]

{
∂L̄

∂ω

}
− [β]T

{
∂L̄

∂q

}
= {N} (2.19)

where q is the generalized coordinate, ω is a quasi coordinate representing of the velocities

(cannot be directly integrated to get the positions q), and L̄ is the Lagrangian written in a
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new form as a function of the coordinates qk and ωk. Because the ω's can be written as linear

combinations of the q̇k terms they can be expressed in the form ωs = α1sq̇1+α2sq̇2+...+αnsq̇n

or:

{ω} = [α]T{q̇}, {q̇} = [β]{ω} (for non− singular [α]) (2.20)

Expressing equation 2.19 in terms of the variables relevant to this system yields:

d

dt

(
∂L

∂{bvB}

)
+ {bω̃b}

∂L

∂{bvB}
−[Tbi]

∂L

∂{irB}
= {bFB} (2.21)

d

dt

(
∂L

∂{bωb}

)
+ {bṽb}

∂L

∂{bvB}
+ {bω̃b}

∂L

∂{bωb}
−[Ebi]

∂L

∂{iϕB}
= {bMB} (2.22)

where L is the Lagrangian of the system and bF
B and bM

Bare the aerodynamic and grav-

itational forces and moments respectively (expressed in the body frame b). Because all of

the bodies in this system are rigid and the gravitational e�ects are handled as external loads

there is no potential energy involved in the Lagrangian calculation. Also, because the kinetic

energy is not dependent on the positions {irB} or the angles {iϕB} the corresponding terms

in equations 2.21 and 2.22 are both zero. More details on the exact form of the kinetic energy

equation follow.

2.2.1 Kinetic Energy Equation

The expression for the kinetic energy is typically given as one half a mass component mul-

tiplied by velocity squared. Expanding this into a little more robust form provides the

equation:

KE =
1

2

∫
VTVdm (2.23)

and for this particular system (the equations for the second wing are derived in the same

exact manner as for the �rst):

KE =
1

2

∫
VBT

VBT

dmb +
1

2

∫
VWT

VWT

dmw (2.24)

After integration this can be condensed to a convenient matrix equation:

KE =
1

2
{VT}[M]{V} (2.25)
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In order to preserve this form the vector V must be enlarged to include the rotational velocity

between the body and wing frames. This vector is given by:

{V} =
{
bv

BT

,bω
bT ,bω

bwT
}
T (2.26)

This allows us to create a matrix M as de�ned below:

[M] =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (2.27)

[M11] = mT [E] (2.28)

where [E] is the 3x3 identity matrix.

[M12] = mw

(
−br̃BH −Tbwwr̃HWTwb

)
(2.29)

[M13] = mw

(
−Tbwwr̃HWTwb

)
(2.30)

[M21] = [M12]
T (2.31)

[M22] =b IBB + TbwwIWWTwb +mw

(
−br̃BH −Tbwwr̃HWTwb

)T (−br̃BH −Tbwwr̃HWTwb

)
(2.32)

[M23] = TbwwIWWTwb +mw

(
−br̃BH −Tbwwr̃HWTwb

)T (−Tbwwr̃HWTwb

)
(2.33)

[M31] = [M13]
T (2.34)

[M32] = [M23]
T (2.35)

[M33] = TbwwIWWTwb +mw

(
−Tbwwr̃HWTwb

)T (−Tbwwr̃HWTwb

)
(2.36)

The derivatives with respect to the velocities vb and ωb are as follows:

∂L

∂vB
=

1

2

(
bv

BT

M11 +b ω
bT M21 +b ω

bwT

M31

)
+

1

2

(
M11bv

B + M12bω
b + M13bω

bw
)

(2.37)

∂L

∂ωb
=

1

2

(
bv

BT

M12 +b ω
bT M22 +b ω

bwT

M32

)
+

1

2

(
M21bv

B + M22bω
b + M23bω

bw
)

(2.38)
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and their time derivatives:

d

dt

(
∂L

∂vB

)
=

1

2

(
bv̇

BT

M11 +b ω
bT Ṁ21 +b ω̇

bT M21 +b ω
bwT

Ṁ31 +b ω̇
bwT

M31

)
+

1

2

(
M11bv̇

B + Ṁ12bω
b + M12bω̇

b + Ṁ13bω
bw + M13bω̇

bw
) (2.39)

d

dt

(
∂L

∂ωB

)
=

1

2

(
bv̇

BT

M12 +b vB
T

Ṁ12 +b ω
bT Ṁ22 +b ω̇

bT M22 +b ω
bwT

Ṁ32 +b ω̇
bwT

M32

)
+

1

2

(
M21bv̇

B + Ṁ21bv
B + Ṁ22bω

b + M22bω̇
b + Ṁ23bω

bw + M23bω̇
bw
)
(2.40)

With these equations it is possible to begin assembling the full form of the Lagrange's equa-

tions stated previously in Equations 2.21 and 2.22. It is important to note that the equations

of motion also require the external forces and moments. For the purpose of this thesis these

would include the gravitational e�ects and those e�ects due to the aerodynamics of the wings

(the body is not considered to have an aerodynamic a�ect).

2.2.2 State Space Form

For ease of use the equations of motion are transformed into a state space form in which the

body acceleration and body angular acceleration terms are collected on the left hand side

of the equation while all others are kept on the right hand side. This yields the following

equations:

M11v̇
B + M12ω̇

b = FA + FG − ω̃b
∂L

∂vB
−
(
Ṁ12ω

b + Ṁ13ω
bw + M13ω̇

bw
)

(2.41)

M21v̇
B+M22ω̇

b = MA+MG− ṽB
∂L

∂vB
−ω̃b ∂L

∂ωb
−
(
Ṁ21v

B + Ṁ22ω
b + Ṁ23ω

bw + M23ω̇
bw
)

(2.42)

In simpli�ed terms these equations are of the form of a mass matrix dependent on the

kinematic variables (which are periodic with time) multiplied by the state derivatives equal

to the forcing function dependent on the states and the kinematic variables:
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[M(ζ(t))]ẋ = f(x, ζ(t)) (2.43)

Where x are the states and ζ(t) are the periodic prescribed kinematics.

2.2.3 Center of Gravity Calculation

The center of gravity of the entire system is not centered about the body but rather moves

with respect to the body due to the motion of the wing. The position of the center of gravity

with respect to the inertial frame is calculated as (following equations only take into account

one wing, the second wing is added in the same fashion):

ir
CG =

ir
BmB +i r

WmW

mB +mw

(2.44)

Expanding ir
W into its various components yields:

ir
CG =

ir
BmB +mW

(
ir
B + Tib br

BH + TibTbw wr
HW
)

mT

(2.45)

The kinematic equation for the motion of the center of gravity is simply the derivative of

Equation 2.45.

iṙ
CG =

Tib bv
BmB +mW

(
Tib bv

B + Tib bω
b
br
BH + Tib bω

bTbw wr
HW + Tib bω

bwTbw wr
HW
)

mT

(2.46)

2.2.4 Wing Kinematics

The wing kinematics are divided into three main motions, the dominant motion being the

stroke (often referred to in terms of the downstroke and upstroke), the rotation of the wing

about its axis of rotation (to ensure that the wing is at a positive angle of attack for all or the

29



CHAPTER 2. EQUATIONS OF MOTION

majority of the stroke), and the deviation from the stroke plane. As insects do not employ

a tail for steering or stabilization, the wing kinematics are of particular importance since

they are responsible for the aerodynamic forcing, and passive as well as active stabilization.

The focus of this thesis was not to explore the exact kinematics of a particular insect and

therefore a more simple approach was used to describe the wing motion and help with physical

understanding of the phenomena occurring during �ight. In this case a sinusoidal description

of the wing motion determined through use of an amplitude, o�set, and phase lag captures

the necessary motion well enough.

2.2.4.1 Stroke Angle

The stroke angle is the dominant motion of the wing which for many insects is a rowing

motion in hover rather than the typical up and downstroke of birds (though some insects

such as some butter�ies and moths utilize a motion dominated by up and down strokes). In

this case the motion is described by the following equation (where ν is the �apping frequency):

κ = κ0 + κmax cos(2πνt) (2.47)

These variables (κ0, κmax) are separate for each wing where setting κ0,r = −κ0,l and

κmax,r = −κmax,l produces a symmetric stroke pattern, an example of which is shown below

in Figure 2.3.

2.2.4.2 Deviation Angle

Choosing a frequency twice that of the stroke and rotation provides for the �gure eight

pattern characteristic of many insect �apping motions. The �gure eight pattern is illustrated

in Figure 2.4 where it is helpful to note that the stroke plane is the zero line (in z) and all

motion above or below this line is due to deviation. In order to produce this motion it is

necessary to introduce a phase lag in deviation, φµ, relative to the stroke angle.
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Figure 2.3: Example stroke angle
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Figure 2.4: Right wing tip location in the x-z plane, showing characteristic �gure eight pattern
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Figure 2.5: Example deviation angle

µ = µ0 − µmax cos(4πνt+ φµ) (2.48)

Again this motion is separate for each wing and setting µ0,r = −µ0,l, φµ,r = φµ,l and

µmax,r = −µmax,l produces a symmetric stroke pattern, an example of which is shown in

Figure 2.5.

2.2.4.3 Rotation Angle

The rotation angle produces much of what would typically be considered the geometric angle

of attack and is also lagged from the stroke angle, this time by φτ . This lag allows for

advanced or delayed rotation, where a negative phase lag produces an advanced rotation

(rotation begins before the stroke reaches the maximum amplitude at the end of each half

stroke).

τ = τ0 − τmax sin(2πνt+ φτ ) (2.49)

Separating the motion for each wing involves having di�erent τ0, τmax, and φτ where

τ0,r = τ0,l φτ,r = φτ,l and τmax,r = τmax,l produces a symmetric stroke pattern, an example of

which is shown in Figure 2.6.
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Figure 2.6: Example rotation angle

2.2.5 Conservation of Momentum

Applying the wing kinematics discussed in section 2.2.4 in a vacuum without gravity creates

an environment where no external loads are considered. This allows the consideration of the

system with only the inertial forcing from the wing motion and can be used for validation

the dynamics in vacuum.

The initial condition determines the initial momentum which is conserved because there

is no external forcing. Setting the initial state (vB and ωb) equal to zero will give a non-zero

initial linear and angular momentum so it is more convenient to �rst solve for an initial

state whereby the linear and angular momentum are equal to zero. The linear and angular

momentum equations below are the result of the principles of linear and angular momentum,

for more details see Bierling [1].

LM = vB (mb +mw) +mw

(
ωb × rBW + ωbw × rHW

)
(2.50)

AM = IBBω
b + IWW

(
ωb + ωbw

)
+ rBW ×

(
vB + ωb × rBW + ωbw × rHW

)
mw (2.51)

Setting these equations equal to zero and solving for the resulting initial state (vB and ωb)

gives a point from which time marching can begin. Simulating the system and calculating the

resulting linear and angular momentum (in the inertial frame) provides Figures 2.7 and 2.8.
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Figure 2.7: Linear momentum in vacuum
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Figure 2.8: Angular momentum in vacuum

This shows that, as expected, the linear and angular momentum are equal to zero withing

numerical precision when only inertial forcing is present.
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Chapter 3

Aerodynamic Model

As discussed in the literature review, a number of researchers have investigated the aerody-

namics of �apping �ight. Most have used quasi steady methods [2, 7, 8, 26], computational

�uid dynamics (CFD) [38, 10, 46], or a hybrid form of the two. The purpose of this thesis

was to create a �ight dynamic model for the eventual purpose of controller synthesis and the

analysis of �ight dynamic metrics such as stability and maneuverability. The aerodynamic

models discussed above are inadequate for this application. The quasi steady methods often

run e�ciently but are not able to fully capture the complicated phenomena surrounding the

complex �apping motion. CFD methods are able to capture these phenomena but can take

days to run a single period of analysis, much too long for use in a controller. For these

reasons it was important to create a reduced order model capable of accurately capturing

these phenomena but also one that runs e�ciently with run-times more on the order of the

quasi steady methods. The airloads model developed by Peters et al. [15] coupled with

an assumed in�ow model allows for the degree of accuracy necessary while still running in

reasonable amounts of time for controller synthesis.
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3.1 Airloads Model

Peters' airloads model allows for large frame motion (such as the prescribed motion of the

wings) as well as small deformation from this frame. As this thesis deals only with rigid

bodies the small deformation component is not used. The airloads model also provides for

inclusion of a completely separate in�ow model that can be varied independently from the

airloads model itself. This allows the quasi steady airloads model to include as detailed

a wake (in�ow) model as desired, up to and including a fully 3D unsteady wake. Thus

by carefully calculating and including all e�ects it is possible to take what begins as a 2D

airloads theory and create a fully encompassing 3D aerodynamic model. The importance

here is that this in�ow model can be varied to be as accurate and as e�cient as desired, all

completely separately from the quasi steady airloads model.

The airloads model itself is derived from potential �ow and begins with the non-penetration

boundary condition due to the velocity from the movement of the airfoil, the freestream �ow,

and any induced �ow (in�ow).

w = u0
∂h

∂x
+
∂h

∂t
+ v0 + v1

x

b
(3.1)

where w is the total induced �ow, u0 and v0 are the velocities of the airfoil in the x and y

direction (illustrated in Figure 3.1), v1 is the velocity gradient, and h terms represent the

small deformation from the large frame motion which in the present work are set to zero.

The derivation is presented with more details in Peters et al. [15]. The components of

the total induced �ow are related to the general airloads.

τ0 = u0 (w0) (3.2)

τ1 = bẇ0 + u0w1 (3.3)

τ2 =
b

4
ẇ1 (3.4)

τs = fτ0 (3.5)
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Figure 3.1: Peters' airloads model coordinate system

where f is the reversed �ow parameter. These equations are greatly simpli�ed from their

original form due to the assumption that all bodies are rigid. This also leads to w0 = v0 and

w1 = v1 (wm = 0 where m = 2). For more detailed equations with deformation terms, see

Peters et al. [15]. The velocities of the airfoil with respect to the air, u0 and v0 as well as the

velocity gradient v1, are written in the wing frame and are dependent on the fuselage velocity,

the prescribed wing velocity with respect to the fuselage, any freestream �ow present, and

in�ow due to shed vorticity.

u0 = −yκ̇ cos(τ) + yµ̇ sin(τ)− wλx + wV
B
x (3.6)

v0 = −yµ̇ cos(τ)− yκ̇ sin(τ)− wλy + wV
B
z (3.7)

v1 = −bτ̇ − bwωby (3.8)

where y is the spanwise location, wλx is the in�ow velocity in the wing x direction, wλy is

the in�ow velocity in the wing z direction, wV
B
x is the velocity of the body in the wing x

direction, wV
B
z is the velocity of the body in the wing z direction, b is the semi-chord, and

37



CHAPTER 3. AERODYNAMIC MODEL

wω
b
y is the angular velocity of the body in the wing y direction. The general airloads can

then be resolved into a pressure di�erence ∆P (again, details in Peters et al. [15]) which

is integrated along the chord to get the aerodynamic lift, thrust, and moment in the wing

frame (per unit length).

L0 = −2πρb

(
fu0v0 +

1

2
(bv̇0 + u0v1)

)
(3.9)

T = 2πρbfv20 (3.10)

L1 = πρb

(
u0v0 −

1

2

b

4
v̇1

)
(3.11)

These forces can then be integrated over the span or summed using blade element theory in

order to get the total forcing and moment for the entire wing.

3.1.1 Reversed Flow

Reversed �ow is the term used to refer to the case when the traditional leading edge is no

longer the actual leading edge. In other words, what is usually the trailing edge is leading

with respect to the motion of the airfoil. Several studies have been done that illustrate the

e�ectiveness in using reversed �ow (through timing of wing rotation with respect to stroke)

as a control mechanism [2, 30, 14]. The rotation of the wing can be altered to change the

reaction forces caused by the rotational e�ects. If the wing �ips early (before the end of

the half stroke) then the resulting total force should be upward. If the �ip is late then the

resulting force (due to rotational e�ects) would be a downward force. If the �ip spans both

half strokes then the resulting downward and upward forces (due to rotational e�ects) cancel.

In Figure 3.2 you can see how the advanced or delayed rotation can add or subtract lift from

the case where rotation is symmetric. It is also clear that the trailing edge leads at some

points in the stroke. Therefore proper timing of wing rotation on each wing can create a

force imbalance that can be used for control [2]. The reversed �ow caused by these varying

rotations (anytime the trailing edge is leading) is accounted for the the variable f in Equation

3.5. This parameter, f, is called the reversed �ow parameter and ensures that the ∆P = 0
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advanced

500 mN

downstroke

upstroke 
C

L
=1.74

symmetrical

downstroke

upstroke 

C
L
=1.67

delayed

downstroke

upstroke 

C
L
=1.01

Figure 3.2: Results of alteration to wing �ip timing [2]

at the true trailing edge. There are several cases for f :

f = 1 (reversed �ow neglected) (3.12)

f = −1 (trailing edge always at what is normally the leading edge) (3.13)

f =
u0
|u0|

(full reversed �ow) (3.14)

f = cos(α) (soft reversed �ow) (3.15)

where α is the airfoil angle of attack as de�ned by Peters [15]. In the case of full reversed

�ow the sign of f changes with the sign of u0 moving the stagnation point and thus the lift

direction. Soft reversed �ow makes a smooth transition between these two cases and makes

lift proportional to sin(2α)
2

instead of sin(α).

3.2 Assumed In�ow Models

The quasi-steady airloads model can be coupled with an in�ow model to account for the

unsteady e�ects present due to the complicated nature of �apping �ight. These in�ow mod-
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els are completely separate from the airloads model as shown by the separate λ terms in

Equations 3.6 and 3.7. Thus di�erent in�ow models can be developed and applied to the

aerodynamic forcing equations allowing for a wide range of accuracy and e�ciency (run

time). Theoretically, given a fully 3D in�ow that takes into account all the wake e�ects at

all times, one could create a perfect 3D aerodynamic code given the in�ow model and the

2D airloads theory. The in�ow models discussed below were used in various stages of this

thesis work.

3.2.1 Momentum Disk Theory

Helicopter theory often makes use of in�ow in calculating aerodynamic loads as well as

calculating power and e�ciency. A common initial approach to in�ow when dealing with

helicopters is to assume a constant in�ow based on momentum disk theory as detailed by

Johnson [47]. Using momentum theory the thrust generated by a helicopter rotor can be

related to the induced velocity by the equation:

vh =

√
T

2ρA
(3.16)

where vh is the in�ow, T is the thrust from the rotor, ρ is the density of the air, and A is the

area swept by the rotor. The thrust necessary to counteract gravity at trim is just mtotalg.

The area swept by the wings is 2κmaxR
2
w. This leads to the in�ow at hover of:

λ =

√
mtotalg

4ρκmaxR2
w

(3.17)

Alternatively one can calculate the lift force in the body frame without including in�ow and

use the average lift over a period as the thrust from the rotor, T .

λ =

√
(bFA)z

4ρκmaxR2
w

(3.18)

Once a new lift force is calculated using this in�ow it can be substituted as a new rotor

thrust force and the process iterated to a speci�ed convergence condition.
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In order to be used in Equations 3.6 and 3.7 this velocity must be rotated into the wing

frame and the correct components used.

w {λx, λy, λz} T = [Tws]s {0, 0, λ}
T (3.19)

3.3 Power Calculations

The power is calculated by using Equations 3.9, 3.10, and 3.11 for each blade element (where η

is the blade width) and multiplying them by the wing velocity in the corresponding direction.

Power = Tu0 + L0v0 + L1v1 (3.20)

Expanding this equation and simplifying terms yields the equation below:

Power = πρbη

[
−bv̇0v0 −

b

8
v̇1v1

]
(3.21)

Because the velocity functions are periodic they can be expanded using Fourier series

(using v0 without in�ow as an example):

v̇0v0 =
∞∑
n=1

∞∑
m=1

mω [an cos(nωt) + bn sin(nωt)] [−am sin(mωt) + bm cos(mωt)] (3.22)

Integrating these equations over one period to get the average power leads to cancellation

of the terms. When n is not equal to m all terms cancel as they are orthogonal. When n is

equal to m:

∫
period

cos(nωt) sin(mωt)dt =

∫
period

cos(nωt) sin(nωt)dt = 0 (orthogonal) (3.23)
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anbm

∫
period

cos(nωt) cos(mωt)dt− ambn
∫
period

sin(nωt) sin(mωt)dt (3.24)

= anbn

∫
period

cos2(nωt)dt− anbn
∫
period

sin2(nωt)dt (3.25)

= anbn

∫
period

[
cos2(nωt)− sin2(nωt)

]
dt (3.26)

= anbn

∫
period

[
1 + cos(2nωt)

2
− 1− cos(2nωt)

2

]
dt (3.27)

= anbn

∫
period

cos(2nωt)dt (which is zero when the period is equal to
1

ω
) (3.28)

The solution for v1 is of the same form, showing that for periodic velocities without in�ow

the average power is always zero. This is signi�cant in that if one were to optimize for average

power there would not be a solution, emphasizing how important the in�ow solution is to

this problem. An accurate in�ow solution is essential when considering matters of power. If

the in�ow is included in the power calculations the resulting power is equal to that shown in

Equation 3.29.

Power = πρbη2fu0v0λy + 2fu0λ
2
y − 2fv20λx − 2fv0λxλy + u0v1λy + λxλyv1 −

b

8
v̇1v1 (3.29)

3.4 Validation

For verifying the aerodynamic model a comparison was made with the quasi steady aero-

dynamics used in Stanford [3]. Stanford [3] used the 2D quasi-steady model developed by

Berman and Wang [26]. The aerodynamics of Berman and Wang [26] are applicable only
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to rigid airfoils undergoing large motion. Peters aerodynamics can handle small �exible mo-

tions in addition to the large rigid motion but the �exible part is not considered in this work.

There are several key di�erences, however, that must be accounted for before the models can

be directly compared. Examining the equations used for the forcing in Berman and Wang

[26]:

Fy′e =

L∫
0

[
m22 · vz′e · ψ̇ + ρf · Γ · vz′e −m11 · ay′e −

dF v
y′e

dx′e

]
· dx′e (3.30)

Fz′e =

L∫
0

[
−m11 · vy′e · ψ̇ + ρf · Γ · vy′e −m22 · az′e −

dF v
z′e

dx′e

]
· dx′e (3.31)

Γ = −0.5 · CT · c ·
√
v2y′e + v2z′e · sin(2 · α) + 0.5 · CR · c2 · ψ̇ (3.32)

d

dx′e

 Fy′e

Fz′e

 = 0.5·ρf ·c·
(
CD(0) · cos2(α) + CD(π/2) · sin2(α)

)
·
√
v2y′e + v2z′e ·

 vy′e

vz′e

 (3.33)

Which when converted to the variables used in this work yield:

L0 = −2CTρb

(
u0v0f +

1

2

CR
CT

(bv̇0 + u0v1)

)
η −

dF v
z′e

dx′e
η (3.34)

T = 2CTρbfv
2
0η + CRρbv0v1η −

dF v
y′e

dx′e
η (3.35)

and f =
u0√
u20 + v20

(3.36)

Equations 3.34, 3.35, and 3.36 illustrate the key di�erences in the aerodynamics being

used for this work and those presented by Berman [26]. The last terms in Equations 3.34 and
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Figure 3.3: Comparison between altered Peters' airloads model and Stanford [3] results

3.35 represent viscous drag terms and for comparison are calculated using the same method

presented in Equation 3.33. The CT and CR presented in these equations are empirically

determined coe�cients that can be set to π to agree with Peters theory or the coe�cients

from Berman [26] for comparison to that work. As seen in Equation 3.36 the reversed �ow

coe�cient must be set to the soft reversed �ow condition in order to match the sin(2·α)
2

trend

from Equation 3.32. The study also uses an elliptic wing as de�ned in Equation 3.37 where c

is the chord, c̄ is the average chord, y is the span location, and Rw is the overall wing length.

The last major di�erence is the presence of a v0v1 term in the thrust where there is not one in

Peters theory. This term turns the force due to the u0v1 term, usually perpendicular to the

wing, and makes it perpendicular to the �ow. Also ignored here are the added mass terms in

the chord-wise direction. When these terms are set to agree (viscous drag added, coe�cients

of thrust and rotation equal, added mass ignored, soft reversed �ow added, elliptic wing, and

v0v1 term added) the results are as shown in Figure 3.3 and exhibit exact agreement (the

e�ect of each of the various assumptions is considered further in Section 5.2). The parameters

used in this comparison are shown in Table 3.1.

c =
4c̄

π
√

1− y2

R2
w

(3.37)
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CHAPTER 3. AERODYNAMIC MODEL

Parameter Value Units

ν 26 Hz

Rw 50 · 10−3 m

κ0 0 radians

κmax π/3 radians

τ0 π/2 radians

τmax π/4 radians

φtau 0 radians

µ0 0 radians

µmax 0 radians

φµ 0 radians

CT 1.833 -

CR π -

CD(0) 0.21 -

CD(π/2) 3.35 -

c̄ 18.2 · 10−3 m

mB 1.648 · 10−3 kg

mw 4.7 · 10−5 kg

Table 3.1: Parameters used in aerodynamic validation (Figure 3.3)
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Trim and Stability

4.1 Stroke-Averaged System

Since the wing frequencies are much higher than the �ight dynamic frequencies, �apping wing

aerodynamics on a MAV scale are often approximated on a stroke-averaged basis as these

are su�ciently accurate enough on the time scales of the rigid-body dynamics [34, 36]. Here

the linearized forcing is determined using perturbations from a reference state to determine

Jacobians and initial forcing vectors. In this particular study only symmetric variables are

considered.

The system equations are of the form (Subsection 2.2.2):

[M(ζ(t))]ẋ = f(x, ζ(t)) (4.1)

One can average the forcing over one �apping cycle for a speci�ed periodic kinematics

ζ(t) and constant prescribed state x0. This yields an average forcing dependent on kinematic

variables, ζ0, and the state. The kinematic variables, ζ0 are variables that parametrize the

actual kinematics, e.g., κ0, κmax, τmax, φτ .
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favg(x0, ζ0) =

∫ T
0
f(x0, ζ(t))dt

T
(4.2)

It is also necessary to average each entry of the mass matrix, M(ζ(t)), for one stroke

period. This leads to the stroke averaged system:

[Mavg]ẋ = favg(x, ζ0) (4.3)

4.2 Stroke-Averaged Nonlinear Trim

The objective of this section is to determine the trim conditions of the stroke-averaged system

by equating the stroke-averaged forces to zero. This leads to no change in the velocity states

of the system over a period. Given the stroke-averaged forcing (Equation 4.3) it is possible

to solve for a stroke averaged non-linear trim condition. In this case, because the system

has been stroke-averaged, the goal of the trim analysis is to get ẋ = 0 which is equivalent

to favg = 0. Since the aerodynamic forces are a nonlinear function of the state variables

as well as the control variables, a nonlinear iterative solution technique is required. Here a

Newton-Raphson method is used. The Jacobian (derivative of the function with respect to

the variables) is calculated using �nite di�erence.

The �rst set of trim variables, ξ, considered are those of the symmetric states relevant to

the aerodynamics and gravity, u, w, q, and Θ (while holding the wing kinematics constant).

First it is necessary to calculate the initial stroke-averaged aerodynamic and gravitational

forcing vectors, FA0 andFG0 (consisting of the forward forcing X, the vertical forcing Z, and

the pitch moment M, as well as a zero in the fourth row from the fourth equation q = θ̇ = 0)

based on the trim variables. Perturbing each of the entries in the vector ξ and comparing the

period averaged forcing to the initial values, FA0 and FG0 , provides the the columns of the

Jacobians, ∂FA

∂ξ
and ∂FG

∂ξ
. These Jacobians are in e�ect the stability derivatives and would

correspond, for example, to the slopes of the curves found in Figures 5.6, 5.7, 5.8, and 5.9 if
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the initial state were chosen to be the zero state for each of the variables. This provides the

average forcing linearized about the trim variables:

favg(x, ζ0) =

[
∂FA

∂x

]
{∆ξ}+

[
∂FG

∂x

]
{∆ξ}+ {FA0}+ {FG0} (4.4)

It is then possible to solve for a new initial state by iterating the equation:

ξ1 = ξ0 −
[
∂FA

∂ξ
+
∂FG

∂ξ

]−1
(FA0 + FG0) (4.5)

Iteration continues until the error metric (error vector squared) is less than 10−10. In

order to prescribe certain motions such as hover, forward �ight, and climb, more constraints

are needed in the trim analysis. In particular, the derivatives of the vertical and horizontal

inertial positions have to be prescribed ( ˙ixB and ˙izB). This adds two more equations to the

system, namely Equations 4.6 and 4.7.

iẋB = prescribed (4.6)

iżB = prescribed (4.7)

This necessitates the use of all four symmetric states and two kinematic variables as trim

variables. The kinematic variables chosen for this study as control variables are the stroke

o�set, κ0, and the maximum magnitude of rotation, τmax. Otherwise the trim solution is the

same as given in Equations 4.4 and 4.5.

4.3 Stroke-Averaged Linearized Stability About Trim

After a trim state has been calculated it is possible to calculate the stability about this

trim state by simply taking the eigenvalues of the linearized stability matrix,
[
∂FA

∂x
+ ∂FG

∂x

]
,

calculated about the trim state. The above matrix is the subset of the matrix computed for

the trim solution
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4.4 Periodic Trim

Without stroke averaging, the system (Equation 2.43) is a time-varying system. For periodic

kinematics, the system becomes a time-varying periodic system. A periodic system can have

a periodic trim solution which can calculated using a periodic trim solution technique. The

goal of a periodic shooting calculation is to �nd the initial condition which leads to a periodic

solution. The simulation of the system over one period using the initial condition results in

a �nal state equal to the initial one.

x(t0, x0) = x(t0 + T, x0) (4.8)

As this analysis focuses on the symmetric variables only the longitudinal states are of

concern. Because of this only two kinematic variables are needed for control, as stated above.

In order to solve for the initial trim state a periodic shooting method is implemented whereby

each of the symmetric states is perturbed and time marched through one period of motion

and then compared to the unperturbed �nal state. Stated explicitly, after time marching the

initial guess through one period the di�erence in the �nal and initial states is the error:

xgT − x
g
0 = error (4.9)

Where xgT is x(T, xg0) (4.10)

The error vector in this case is a non-linear function of the trim variables, ξ. Squaring

the error vector gives the error metric by which convergence is determined.

Starting with an initial guess for the trim variables ξ0, one can iterate using the Newton

Raphson scheme to get a trim condition (when the error metric is less than 10−18):

x0 +
∂x0
∂ξ0

∆ξ = xT +
∂xT
∂ξ0

∆ξ (4.11)
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ξ1 = ξ0 + ∆ξ (4.12)

It is important to note that, except for the case of completely prescribed kinematics, extra

equations (beyond the four state equations) are needed to prescribe the motion of the system

as desired. In order to prescribe hover, forward �ight, and climb, the averages of the deriva-

tives of the vertical and horizontal inertial positions have to be prescribed ( ˙ixBavg and ˙izBavg).

This adds two more equations to the system, namely Equations 4.13 and 4.14.

˙ix
B
avg =

∫ T
0

˙ix
Bdt

T
= prescribed (4.13)

˙iz
B
avg =

∫ T
0

˙iz
Bdt

T
= prescribed (4.14)

This necessitates the use of all four symmetric states and two kinematic variables as trim

variables (same trim variables as the stroke-averaged case).

4.5 Stability of the Periodic System (Floquet Analysis)

To calculate the stability of the system we calculate the state transition matrix. The state

transition matrix gives the e�ect of perturbation (about the trim) in the initial state on the

state at the end of one period. If the perturbation grow then we have instability otherwise

we have a stable system. In order to do this we perturb each of the states in the initial

condition, x0, and use the perturbation in the resulting solutions at the end of one period

to form the columns of the state transition matrix φ. Note that this matrix is a subset of

the matrix calculated for trim calculations based on periodic shooting. For stability we have

φ = eAT where the eigenvalues of A determine the stability of the system.
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Results

5.1 System Parameters

The system parameters used in this study are altered Manduca sexta parameters derived

from [48, 49, 50] and are listed below in Table 5.1. The vehicle itself is not meant to be an

exact representation of the Manduca sexta but only based on one, and so the values may be

slightly di�erent than those found in literature. There are also crucial di�erences in that the

body is modeled as an ellipsoid and the wings are rectangular. These parameters may also

be varied in speci�c portions of this work as described throughout.
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Symbol Parameter Value Units

mB Body mass 1.780 � 10−3 kg

mw Wing mass 2.133 � 10−5 kg

IBB Body inertia tensor Equation 5.1 kg �m2

IWW Wing inertia tensor Equations 5.2, 5.3 kg �m2

rBH Vector from the body CG to the hinge point Equations 5.4, 5.5 m

rHW Vector from the hinge point to the wing CG Equations 5.6, 5.7 m

c̄ Average chord 0.019427 m

Rw Wing length 0.05055 m

Sw Wing area 0.98203 � 10−3 m2

ν Flapping frequency 25 Hz

Table 5.1: Morphologic parameters

Assuming an ellipsoid body with body length (46.377 mm) and radius (5.93 mm) from

[48, 49] provides a body inertia tensor as shown in Equation 5.1.

bI
B
B =


77.821 0 0

0 77.821 0

0 0 2.5307

 � 10−8 kg �m2 (5.1)

Assuming rectangular wings using the parameters shown in Table 5.1 provides the right

and left wing inertia tensors.

wrI
Wr
Wr

=


4.5421 0 0

0 0.67084 0

0 0 5.2129

 � 10−9 kg �m2 (5.2)

wl
IWl
Wl

=


4.5421 0 0

0 0.67084 0

0 0 5.2129

 � 10−9 kg �m2 (5.3)
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No data was found for the vectors from the body CG to the hinge so the values in

Equations 5.4 and 5.5 were assumed where appropriate.

br
BHr = [0, 5.58, −10]T � 10−3m (5.4)

br
BHl = [0, −5.58, −10]T � 10−3m (5.5)

Assuming rotation about the midchord and the rectangular wing pro�le provides the

following hinge to wing CG vectors for the right and left wings.

wr
HWr = [0, 0.025275, 0]Tm (5.6)

wr
HWr = [0, −0.025275, 0]T � 10−3m (5.7)

5.2 E�ects of Model Assumptions on Aerodynamic Forc-

ing

As mentioned in Sections 3.2 and 3.4 there are many di�erent modeling considerations when

trying to accurately model the complex �apping wing system of a �apping wing MAV. In

this section the e�ect of some of these models on the aerodynamic forcing will be examined.

The parameters used were the system parameters described above with kinematics as shown

in Table 5.2.
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Parameter Value (degrees)

κ0 0

κmax 0.9594

τ0 π/2

τmax 1.4667

φτ 0

µ0 0

µmax 0

µφ 0

Table 5.2: Kinematic Parameters

5.2.1 E�ect of Reversed Flow
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Figure 5.1: Comparison of aerodynamic forcing curves showing the e�ect of adding reversed �ow

Figure 5.1 shows the e�ect of adding soft reversed �ow (de�ned in Section 3.1.1) to the

quasi-steady aerodynamic model. Examining the body frame forcing curves in Figure 5.1

shows that adding reversed �ow does not a�ect the body frame thrust force in an average

or an instantaneous sense but it does reduce the magnitude of the body lift force at all

times during the period. This is to be expected given that the inclusion of soft reversed �ow

54



CHAPTER 5. RESULTS

switches the trend of lift from sin(α) to sin(2α)
2

. The soft reversed �ow also explains the double

peaks per half stroke in the body lift curves. As the wing rotates down from ninety degrees

the lift increases up until the point it reaches forty-�ve degrees at which point it begins to

reduce again. at the middle of the half stroke it reaches a minima before increasing its as

it increases in angle of attack again. Towards the end of the half stroke the lift magnitude

again reduces as the angle of attack moves from forty-�ve degrees back to ninety. This same

pattern repeats on the other half stroke.

5.2.2 E�ect of Empirical Coe�cients
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Figure 5.2: Comparison of aerodynamic forcing with the addition of empirical constants

Figure 5.2 shows the results of adding the empirical coe�cients CT = 1.678 shown in Equa-

tions 3.34 and 3.35 to the results obtained in Section 5.2.1. Adding the empirical coe�cient

into the forcing model again does not have an e�ect on the body frame thrust force but does

have a signi�cant a�ect on the body lift force. Decreasing the coe�cient of thrust relative to

the coe�cient of rotation puts more emphasis on the rotational portions of the wing frame

lift and thrust equations and decreases the overall magnitude of the forcing.
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5.2.3 E�ect of Viscosity
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Figure 5.3: Comparison of aerodynamic forcing with the addition of viscosity

Figure 5.3 shows that e�ect of adding the viscous forcing shown in Equations 3.34 and 3.35 to

the results obtained in Section 5.2.2. The addition of viscosity changes only the instantaneous

body thrust. It increases drag for both the forward and backward stroke increasing the power

required. It does not a�ect the stroke-averaged thrust as its e�ects in the body frame due to

the forward stroke are canceled by those on the back stroke.

5.2.4 E�ect of v0v1 Term
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Figure 5.4: Comparison of aerodynamic forcing curves with the addition of the v0v1 term
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Figure 5.4 shows the e�ect of adding the v0v1 term shown in Equation 3.35 to the results

obtained in Section 5.2.3. It shows that while adding the v0v1 term to Equation 3.35 does

a�ect instantaneous forcing values in the body frame it does not a�ect the overall averages

over the period.

5.2.5 In�ow
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Figure 5.5: Comparison of aerodynamic forcing curves with the addition of in�ow

Figure 5.5 shows the e�ect of adding the prescribed in�ow as discussed in Section 3.2 to the

results obtained in Section 5.2.4. It can be seen that adding a constant in�ow model does

not a�ect the overall average of the body thrust but does a�ect both body thrust and lift

instantaneously and reduces the stroke average of the body lift force due to the energy lost

in the wake.

5.3 Nominal System Dynamics

The nominal case consists of a system utilizing the system parameters discussed in Section

5.1. The aerodynamics utilize soft reversed �ow but do not include viscous drag or in�ow.

All time marching was accomplished using the MATLAB program ode45 using a relative

tolerance of 10−10 and an absolute tolerance of 10−15.

57



CHAPTER 5. RESULTS

5.3.1 In�uence of State Variables on Forcing

The e�ect of state and potential kinematic control variables (particularly κ0, κmax, τ0, and

τmax) is examined over the course of a stroke cycle (stroke-averaged forcing). The slopes of

the resulting data can be interpreted as aerodynamic (stability and control) derivatives. Both

symmetric and antisymmetric variations are considered though it is important to note that

the kinematics and geometry are symmetric so changes in the symmetric state variables can

only lead to symmetric load variations (though not necessarily vice versa). Using the nominal

case (reversed �ow, no empirical coe�cients, no in�ow, no viscous drag, no deviation, AC

above the body CG), and a hover trim condition, the results are as shown below in Figures

5.6, 5.7, 5.8, and 5.9. For display purposes the velocities, forces, and moments are normalized

by the characteristic velocity, force, and moment as described in Equations 5.8, 5.9, and 5.10.

V̄ = 2Rwν sin(κmax) (5.8)

F̄ = ρV̄ 2Sw (5.9)

M̄ = ρV̄ 2Swc̄ (5.10)
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Figure 5.6: In�uence of longitudinal variables on longitudinal forcing

Figure 5.6 shows the variation in the symmetric aerodynamic loads (x direction force

XB, z direction force ZB, and pitching moment MB) due to perturbation in the symmetric
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velocities. The velocity perturbation in the x direction, uB, leads to little change in loads

other than the pitching moment, MB. Due to the lack of any viscous drag forces there is no

change in x direction force (as seen later), force in the z direction experiences a similar lack

of change because increase in the force from increased velocity in one direction are o�set by

decrease in forcing while �apping in the opposite direction. The signi�cant moment e�ect is

due to the fashion in which 2-D pitching moment, L1, is calculated in Equation 3.11. The

u0v0 term leads to an additive e�ect on the forward and backward stroke, for example, if the

perturbation is positive then the increase in these two quantities on the forward stroke leads

to an increased pitching moment. On the reverse stroke a decrease in both of these terms

means that the L1 quantity does not cancel and a net pitch up results (after rotation into

the body frame).

When perturbing velocity in the z direction the only signi�cant a�ect is a change in the

vertical force ZB. An increase in upward velocity lowers the e�ective angle of attack and

thereby decreases the vertical force, e�ectively acting as a damper for the motion.

Perturbing the pitch rate produces a signi�cant pitch damping as well as a change in

the x direction forcing. Perturbing pitch in a positive direction increases the angle of attack

when the wings are rear of the CG and decreases it when forward of the CG. This e�ectively

produces a pitch down moment, damping out the pitch perturbation (the opposite of this

e�ect is present with a negative pitch perturbation, again damping out the motion). The x

direction forcing perturbation arises from the u0v1 term found in Equation 3.3. Without an

equivalent v0v1 term as found in Berman and Wang [26] the forcing vector that results from

this u0v1 term is perpendicular to the wing rather than to the �ow. Therefore e�ective angle

of attack changes result in forward forcing when pitch is perturbed.
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Figure 5.7: In�uence of lateral variables on longitudinal forcing

Figure 5.7 shows the e�ect of lateral motion on longitudinal forces (y direction force Y ,

roll moment L, and yaw moment N), especially the z direction force. These e�ects, however,

appear to be small when compared with those shown in Figures 5.6 and 5.8. Particularly

the changes in forces and moments due to roll are very small and could be neglected.
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Figure 5.8: In�uence of lateral variables on lateral forcing

Figure 5.8 shows the e�ect of lateral velocity perturbations on the lateral aerodynamic

loads. A positive perturbation in the y velocity leads to a signi�cant negative rolling moment.

This moment is due to the increase in e�ective angle of attack on the right wing (the wing

toward which the body is moving) and the corresponding decrease in angle of attack of the

left wing. This leads to a net negative rolling moment. The lack of a yaw as well as side

force damping is due to the absence of viscous drag force in this model.

A signi�cant roll damping is present while all side force and yaw damping is negligible.
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Figure 5.9: In�uence of control variables on longitudinal forcing

In Figure 5.9 the e�ect of the two control variables demonstrates how the vehicle can be

controlled for symmetric motion. κ0 perturbations yield pitching moments because the mean

location of forcing is shifted forward or back from the CG (positive κ0 shifts the wings center

of motion further back). This allows for pitch control, which also yields inertial x direction

control as the vehicle can be tipped forward or backward and then z body direction forces

increased or decreased to achieve inertial x direction movement. The change in z direction

forcing is achieved by altering the τmax kinematic variable. This changes the e�ective angle

of attack of the wing.

5.3.2 Stroke-Averaged Nonlinear Trim

The trim condition resulting from using prescribed kinematics (κ0 = 0, κmax = 0.95944, τ0 =

π/2, τmax = π/4, and no deviation) are shown in Table 5.3. As seen in the table, there are

at least four possible trim conditions which where found by starting the iterative nonlinear

solution at di�erent initial guesses.
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State Trim Value

u -1.7759e-15

w -3.6136

q 0

Θ 1.4234e-15

(a)

State Trim Value

u -2.4840e-16

w 1.7177

q 0

Θ -1.2207e-16

(b)

State Trim Value

u 2.4680e-15

w 4.7524

q 0

Θ 3.1416

(c)

State Trim Value

u 5.9715e-17

w -7.2844

q 0

Θ 3.1416

(d)

Table 5.3: Multiple sets of trim variables for prescribed kinematics

In Table 5.3 it is clear from the �rst set of data that in order to maintain a constant

state with the given kinematics, the vehicle enters a constant climb in order to counteract

the extra lift generated by the wings. The other states remain at basically zero with no

forward motion or pitching. In the third set of data the vehicle is �ipped over as seen from

the Θ value. This state corresponds to a �ipped over constant descent which, while not that

interesting physically, illustrates a second trim condition for the same kinematic variables.

Two more possible trim states are shown in set (b) and (d). The multiple trim conditions are

a result of nonlinear lift curve slope, speci�cally the fact that the lift initially increases with

e�ective angle of attack, reaches a peak at 45◦ and then decreases. The vehicle z velocity

leads to change in e�ective angle of attack and thus one may �nd multiple solutions to the

trim problem.

Instead of prescribing the control variables, one can prescribe the trim state and calculate

the control variables. The trim variables for hover, climb (1 m/s), and forward �ight (1 m/s)

are shown in Table 5.4. κ0 tilts the mean position of the wings (majority of the stroke motion)

forward or backward of the center of gravity of the system providing pitch control (e�ectively

the elevator when compared to traditional control surfaces). τmax alters the magnitude of

the vertical force produced by the wings as shown in Figure 5.9 and e�ectively acts as the

engine, controlling forward or upward velocity depending on pitch.
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Variable Trim Value

u 0

w 0

q 0

Θ 2.7121e-15

κ0 6.9195e-15

τmax 1.4784

(a)

Variable Trim Value

u -1.7576e-16

w -1

q 0

Θ -1.7576e-16

κ0 -1.2832e-16

τmax 1.2522

(b)

Variable Trim Value

u 1.0000

w 0.001200

q 0

Θ 0.001200

κ0 0.003644

τmax 1.5015

(c)

Table 5.4: Trim variables for prescribed states: (a) Hover (b) Climb (c) Forward Flight

In order to maintain a hover state it is necessary for the vehicle to alter the lift magnitude

from the conditions seen in Table 5.3 so that it just counteracts the force of gravity acting

on the body and wings. As the hinge point is directly at the center of gravity no κ0 change

is necessary to balance the pitching moment and only τmax is changed, being increased to

reduce the e�ective angle of attack and thereby the lift force as seen in Table 5.4 (a).

In Table 5.4 (b) the climb condition shows similar trim variables to those of the hover

condition but with a reduced τmax in order to increase the upward force as shown in Figure

5.9.

The forward �ight case in (c) shows a u not quite equal to one and a w not quite equal

to zero as those are the body velocities and the inertial velocities were the ones prescribed

as described above. The body is also tipped so that the forcing vector can be realigned.

In this particular solution the body is tipped back and the forward and downward velocity

combine to create an inertial forward only velocity. In order to allow the body to move in

this manner κ0 is used as a pitch control to pitch the body and τmax is increased slightly,

reducing the forcing magnitude to the needed levels. While physically it seems odd to tip

backward to move forward, the inertial forward velocity changes the angle of attack of the

wing such that the aerodynamic forcing still cancels the gravitational force appropriately.
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The addition of the forward velocity also creates a pitch up moment (Figure 5.6) which

can only be counteracted by the vehicle pitching back and using gravity to counteract the

moment. The tip back would not be possible with viscous e�ects which would force the

vehicle to tip forward to counteract the viscous drag (as discussed later).

5.3.3 Stroke-Averaged Linearized Stability About Trim

Eigenvalues

-0.009238 + 0.005345i

-0.009238 - 0.005345i

-0.009118

0.006210

(a)

Eigenvalues

-0.009901

0.006250 + 0.009158i

0.006250 - 0.009158i

0.01126

(b)

Eigenvalues

-0.003819 + 0.008713i

-0.003819 - 0.008713i

0.01159

0.01174

(c)

Eigenvalues

-0.02662

-0.009801

0.001548 + 0.008993i

0.001548 - 0.008993i

(d)

Table 5.5: Multiple sets of eigenvalues for prescribed kinematics

Table 5.5 shows the eigenvalues of the system at the four trim conditions presented in Ta-

ble 5.3. All cases show instability about the trim condition as indicated by the positive

eigenvalues.
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Eigenvalues

-0.01056

-0.004422

0.002210 + 0.003718i

0.002210 - 0.003718i

(a)

Eigenvalues

-0.01190

-0.004867

0.001388 + 0.003279i

0.001388 - 0.003279i

(b)

Eigenvalues

-0.01117

-0.001363 + 0.003563i

-0.001363 - 0.003563i

0.003129

(c)

Table 5.6: Eigenvalues for prescribed states: (a) Hover (b) Climb (c) Forward Flight

Table 5.6 show the eigenvalues for the hover, climb and forward �ight trim cases presented

in Table 5.4. Again all of these states show instability about trim which is supported by the

previous work of Bierling [1] and Richter [51]. The transition between hover and climb can

be examined through the root locus plot shown in Figure 5.10 and the transition between

hover and forward �ight similarly in Figure 5.11.
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Figure 5.10: Root locus plot showing the transition from hover to climb
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Figure 5.11: Root locus plot showing the transition from hover to forward �ight

When looking at the transition from hover to climb all eigenvalues maintain their sign

meaning that those that are stable remain stable and those that are unstable remain unstable.

In the case of hover transitioning to forward �ight, the two oscillatory eigenvalues that

are unstable in hover move to stable values for forward �ight while one of the stable real

eigenvalues becomes unstable.

5.3.4 Periodic Trim

The actual periodic time-varying system has a periodic trim. This trim is calculated by

periodic shooting as described in Section 4.4. In the case of prescribed kinematics (κ0 =

0, κmax = 0.95944, τ0 = π/2, τmax = π/4, and no deviation) the trim variables consist only

of the four symmetric states and the resulting trim conditions are shown below in Figure 5.7.

The tables show the trim variables which are the initial values for the states. The tables also

show the stroke-averaged values at trim.
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State Trim Value Average

u 0.1037 2.0063e-08

w -3.4746 -3.4976

q 1.7521 1.2979e-06

Θ 0.01998 3.2286e-09

(a)

State Trim Value Average

u -0.01347 3.3569e-10

w 1.6621 1.6553

q -0.6694 -1.7268e-08

Θ -0.002547 -1.3051e-10

(b)

State Trim Value Average

u 0.3757 4.8539e-09

w 4.5879 4.5965

q 7.2558 2.8861e-06

Θ 3.1057 3.1416

(c)

State Trim Value Average

u -0.3542 6.6106e-09

w -7.09407 -7.1227

q -1.9779 1.3349e-07

Θ 3.1394 3.1416

(d)

Table 5.7: Multiple sets of trim variables for prescribed kinematics

Providing the initial conditions in Table 5.7 results in a periodic response with average

values as shown. When considering that the maximum states are on the order of 100 these

average trim states compare favorably to those found for the stroke-averaged system shown

in Table 5.3.

Prescribing states and allowing two of the kinematic variables to vary in order to achieve

hover, climb, and forward �ight provide the results shown in Table 5.8. Averaging the states

over one period when providing these trim variables provides a better comparison to the

stroke-averaged system and results are shown beside their initial value. As in the prescribed

kinematic case the averaged values (and the corresponding trim kinematic variables) compare

favorably with those of the stroke averaged system shown in Table 5.4.
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Variable Trim Value Average

u 0.0004158 -1.2196e-12

w 0.01501 -6.8662e-06

q 0.4592 3.0978e-09

Θ 0.01387 2.6342e-12

κ0 2.5644e-13

τmax 1.4667

(a)

Variable Trim Value Average

u 0.03585 7.6309e-10

w -0.9795 -1.0000

q 1.2189 4.0828e-07

Θ 0.01687 9.0399e-10

κ0 -1.4761e-12

τmax 1.2382

(b)

Variable Trim Value Average

u 1.002468 0.9996

w 0.07567 0.0056

q 1.3743 5.7435e-007

Θ 0.02025 0.0057

κ0 0.01006

τmax 1.4914

(c)

Table 5.8: Trim variables for prescribed states: (a) Hover (b) Climb (c) Forward Flight

While the forward and vertical velocities listed in Table 5.8 (c) are not one and zero

respectively this is because they are body direction velocities. When they are rotated to the

inertial directions the horizontal velocity and vertical velocity are ˙ixB = 1.0000 and ˙izB =

−4.0172 · 10−4 respectively.
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5.3.5 Stability of the Time-Varying System

Eigenvalues

-0.008955

-0.007726

0.003259 + 0.006159i

0.003259 - 0.006159i

(a)

Eigenvalues

-0.007239

0.008161 + 0.02242i

0.008161 - 0.02242i

0.009764

(b)

Eigenvalues

0.001406 + 0.02622i

0.001406 - 0.02622i

0.003368

0.01096

(c)

Eigenvalues

-0.009036

-0.0081775 + 0.04753i

-0.0081775 - 0.04753i

-0.002184

(d)

Table 5.9: Multiple sets of eigenvalues for prescribed kinematics

All of the trim states in Table 5.7 are unstable as demonstrated by their positive eigenvalues

shown in Table 5.9 except for the �nal trim state which has only negative eigenvalues. Com-

paring these eigenvalues to the analogous cases found for the stroke-averaged system (shown

in Table 5.5) it is clear that the stroke-averaged and time-varying (periodic) systems are not

completely interchangeable. While they do have some similarities (such as trim conditions

and averaged response) their stabilities are not necessarily the same. In both cases they show

the majority of trim conditions to be unstable, the only di�erence being that the periodic

system shows one trim condition to be stable.
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Eigenvalues

-0.008955

-0.007726

0.003259 + 0.006156i

0.003259 - 0.006156i

(a)

Eigenvalues

-0.01008

-0.004870

0.0001577 + 0.002010i

0.0001577 - 0.002010i

(b)

Eigenvalues

-0.01541

-0.001014

0.002956 + 0.003488i

0.002956 - 0.003488i

(c)

Table 5.10: Eigenvalues for prescribed states: (a) Hover (b) Climb (c) Forward Flight

As in the prescribed kinematic case the eigenvalues of the time-varying system are on the

same order as those of the stroke-averaged system but are not similar otherwise. This points

to the fact that the stroke-averaged system is not a direct replacement for the time-varying

system despite the fact that the �apping frequency is much higher than the frequency of the

body dynamics.
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Figure 5.12: Root locus plot showing the transition from hover to climb
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Figure 5.13: Root locus plot showing the transition from hover to forward �ight

The transition from hover to climb and hover to forward �ight in Figures 5.12 and 5.13

both show that the system remains unstable through the entirety of both transitions. Also

those eigenvalues that are stable remain stable and those that are unstable remain unstable.

While the exact paths and values are not replicated in the stroke averaged case some of

the general trends do appear in both cases. For instance, in the case of the transition

between hover and climb, the eigenvalues with real and imaginary components decrease their

magnitude (for both the real and imaginary parts) in both the stroke-averaged and time-

varying cases.

Because these trim conditions are unstable perturbation from these conditions will cause

the system to move away from the periodic trim.

As an example Figure 5.14 shows the hover trim for the nominal periodic system perturbed

by one percent of each value shown in Table 5.8 (a). The body velocities at �rst stay near

the trim condition but as the instability due to the perturbation grows they quickly move
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away from the trim condition.
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Figure 5.14: Perturbed Nominal Hover Trim

5.4 In�ow

The �rst model added for comparison is a prescribed in�ow model as described in Subsection

3.2.1. This constant in�ow is based on momentum disk theory and provides a constant

downwash velocity (in the body frame). This provides a �rst level approximation of the

unsteady portions of the �ow that would contribute to the aerodynamics.
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5.4.1 Periodic Trim

Variable Trim Value Average

u 0.02154 -4.5330e-11

w 0.01509 -2.8670e-05

q 0.9363 1.0289e-07

Θ 0.01520 3.4166e-10

κ0 7.1690e-13

τmax 1.1881

(a)

Variable Trim Value Average

u 0.04655 1.9149e-09

w -0.9818 -1.0000

q 1.3176 5.7236e-07

Θ 0.01674 2.1190e-09

κ0 6.4085e-11

τmax 0.9849

(b)

Variable Trim Value Average

u 1.01260 0.9862

w -0.07876 -0.1627

q 2.1133 1.6284e-06

Θ -0.1470 -0.1634

κ0 -0.01033

τmax 1.1966

(c)

Table 5.11: Trim variables for prescribed states: (a) Hover (b) Climb (c) Forward Flight

In comparing the trim values for the nominal case with a constant in�ow model to those of

the nominal case, some interesting similarities arise. The trends for all three states are similar

in that forward �ight had the highest rotation magnitude in both cases while climb had the

lowest (other states remained similar as well) which makes sense given that the same states

were prescribed for the both cases. It is also interesting to note that all of the prescribed

states showed lower values of max rotation indicating that a geometric angle of attack was

needed, given the same states, to counteract the decrease in angle of attack due to prescribed

in�ow. The forward �ight case here shows a stroke-averaged tip forward rather than the tip
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backward of the nominal case which is easier to grasp conceptually.

5.4.2 Stability of the Time-Varying System

Eigenvalues

-0.01009

-0.003805 + 0.003115i

-0.003805 - 0.003115i

0.002389

(a)

Eigenvalues

-0.009184

-0.006871 + 0.01053i

-0.006871 - 0.01053i

0.005937

(b)

Eigenvalues

-0.01767

-0.003195 + 0.006549i

-0.003195 - 0.006549i

0.008247

(c)

Table 5.12: Eigenvalues for prescribed states: (a) Hover (b) Climb (c) Forward Flight

Table 5.12 presents the eigenvalues of the system with prescribed in�ow. In both Figures

5.15 and 5.16 those eigenvalues that are stable remain stable and those that are unstable

remain unstable.
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Figure 5.15: Root locus plot showing the transition from hover to climb
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Figure 5.16: Root locus plot showing the transition from hover to forward �ight
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CHAPTER 5. RESULTS

Examining Figure 5.17 shows that the values for the eigenvalues of the various climbs

with in�ow are near those of climb without in�ow at the in�ow speed (-1.23022591896135

m/s). This makes sense as in�ow is analogous to climb in many ways. The values are not

going to be exact, however, as the in�ow is modeled to be in the body z direction at all times

where as climb is in the inertial z direction.
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Figure 5.17: Root locus plot showing the transition from hover to climb with a 2 m/s climb (w/o

in�ow)

5.5 Viscous Drag E�ects

This section adds a viscous drag model to the nominal case as described in Equations 3.33,

3.34, and 3.35. The assumed drag constants are CD(0) = 0.07 and CD(π/2) = 3.06 which

match the hawkmoth empirical parameters provided by Berman [26].
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5.5.1 Periodic Trim

Variable Trim Value Average

u 0.02353 -6.3107e-11

w 0.01507 -1.5980e-05

q 0.9983 1.8235e-07

Θ 0.01390 4.1235e-10

κ0 2.8213e-11

τmax 1.4673

(a)

Variable Trim Value Average

u 0.09253 -1.2566e-08

w -0.9794 -1.0000

q 2.3854 -5.7279e-07

Θ 0.01340 2.1154e-09

κ0 -8.1659e-10

τmax 1.1523

(b)

Variable Trim Value Average

u 1.02438 0.9893

w -0.06986 -0.1431

q 2.03599 3.6671e-07

Θ -0.1286 -0.1436

κ0 -0.04407

τmax 1.4592

(c)

Table 5.13: Trim variables for prescribed states: (a) Hover (b) Climb (c) Forward Flight

The only signi�cant change shown between the nominal case trim variables and those of the

nominal case with viscous drag are the initial pitch velocity values which are signi�cantly

higher for the nominal case with viscous drag. It is interesting to note that even with

viscous drag the maximum rotation angles do not change a great deal in magnitude (only

a few percent of their nominal case values) to overcome the viscous e�ects. This indicates

that using the current models assumed in this study, in�ow (unsteady e�ects) seem to have

a much larger e�ect on the overall motion of the body for these three prescribed states.

The forward �ight case exhibits a similar tip forward to the in�ow case, which in the case of

77



CHAPTER 5. RESULTS

viscous e�ects is necessary. The forward �ight of the vehicle causes extra drag on the forward

stroke as compared to back stroke and therefore the lift vector must be tipped forward to

counteract this force.

5.5.2 Stability of the Time-Varying System

Eigenvalues

-0.01069

-0.006397 + 0.008184i

-0.006397 - 0.008184i

0.007932

(a)

Eigenvalues

-0.01357

-0.009158 + 0.01531i

-0.009158 - 0.01531i

0.007203

(b)

Eigenvalues

-0.01918

-0.004635 + 0.007753i

-0.004635 - 0.007753i

0.01132

(c)

Table 5.14: Eigenvalues for prescribed states: (a) Hover (b) Climb (c) Forward Flight

Unlike in the case of trim, viscosity changes the stability of the nominal model signi�cantly.

The eigenvalues for the nominal case with viscous drag show more similarity with those of

the nominal case with in�ow (Table 5.12) than those of just the nominal case (Table 5.10).

If the root locus plots (Figures 5.18 and 5.19) are examined however, neither case shows the

same trends as the nominal case with viscous drag. Also similar to the nominal case with

in�ow (Figures 5.15 and 5.16), the nominal case with viscous drag shows a larger imaginary

magnitude (on those eigenvalues with imaginary parts) than the nominal case (Figures 5.12

and 5.13) alone. In the case of moving from hover to climb this magnitude grows while

moving from hover to forward �ight sees a slight reduction. In both transitions from hover

those eigenvalues that are stable remain stable and those that are unstable remain unstable.
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Figure 5.18: Root locus plot showing the transition from hover to climb
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Figure 5.19: Root locus plot showing the transition from hover to forward �ight
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5.6 Deviation

This section adds deviation from the stroke plane to the kinematic motion. The added

kinematic values are µ0 = 0, µmax = −0.1744, and φµ = π/2.

5.6.1 Periodic Trim

Variable Trim Value Average

u 0.01635 -8.8938e-11

w 0.03643 -2.2226e-04

q 1.7920 3.2974e-07

Θ 0.005028 1.8819e-10

κ0 1.7747e-10

τmax 1.08971

(a)

Variable Trim Value Average

u 0.03606 4.9307e-10

w -0.9586 -1.0000

q 2.2421 5.3350e-07

Θ 0.01036 7.1291e-10

κ0 4.2675e-11

τmax 0.9557

(b)

Variable Trim Value Average

u 1.01450 0.9988

w 0.05214 -0.0427

q 2.5756 2.0669e-06

Θ -0.03650 -0.0425

κ0 0.04563

τmax 1.1253

(c)

Table 5.15: Trim variables for prescribed states: (a) Hover (b) Climb (c) Forward Flight

The addition of deviation does make a few changes to the trim conditions produced for

hover, climb, and forward �ight. As seen in Table 5.15 the forward �ight case shows a tip

forward similar to that seen in the cases with in�ow and viscous e�ects added. Also the
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max rotation angle is decreased (increasing the geometric angle of attack). The addition of

deviation removes body lift over the majority of the stroke as seen in Figure 5.20.
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Figure 5.20: E�ect of deviation on body forces

5.6.2 Stability of the Time-Varying System

Eigenvalues

-0.01046

-0.004668

0.006717 + 0.009378i

0.006717 - 0.009378i

(a)

Eigenvalues

-0.01038

-0.005489

0.005612 + 0.005475i

0.005612 - 0.005475i

(b)

Eigenvalues

-0.01160

-0.003793

0.006515 + 0.007638i

0.006515 - 0.007638i

(c)

Table 5.16: Eigenvalues for prescribed states: (a) Hover (b) Climb (c) Forward Flight

Comparing the eigenvalues for the case with deviation (Table 5.16) to those of the nominal

case (Table 5.10) shows the most similarity of any of the three e�ects so far explored. The

oscillatory modes are unstable for all three conditions in both cases while the static modes

are stable. This is clearly visible in the transition from hover to climb and hover to forward

�ight in Figures 5.21 and 5.22. Comparing these to Figures 5.12 and 5.13 shows similar

though not identical magnitudes and trends.
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Figure 5.21: Root locus plot showing the transition from hover to climb
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Figure 5.22: Root locus plot showing the transition from hover to forward �ight
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5.7 Movement of the Hinge with Respect to the CG

5.7.1 Varying Hinge Location in the Body z Direction

This section alters the system parameters provided in Section 5.1 by varying the hinge

location in the body z (vertical) direction from 0 (CG) to 40 mm above the CG.

5.7.1.1 Periodic Trim

Variable Trim Value Average

u 0.0005014 7.7938e-11

w 0.01374 7.8008e-06

q 0.2497 -3.4385e-09

Θ 0.04137 -8.7338e-10

κ0 1.2000e-12

τmax 1.4301

(a)

Variable Trim Value Average

u 0.0004158 -1.2196e-12

w 0.01501 -6.8662e-06

q 0.4592 3.0978e-09

Θ 0.01387 2.6342e-12

κ0 2.5644e-13

τmax 1.4667

(b)

Variable Trim Value Average

u 0.0003320 -2.0541e-10

w 0.01543 -2.5079e-05

q 0.4565 2.2161e-09

Θ -0.005092 -3.1827e-10

κ0 -2.6800e-14

τmax 1.45759

(c)

Table 5.17: Trim variables for prescribed states while varying the hinge location in the body z

direction: (a) 0.04 m (b) -0.01 m (nominal) (c) -0.04
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Examining Table 5.17 shows that moving the hinge in the body z direction has very little

e�ect on the trim of the system, only slightly changing the values of any of the trim variables.

5.7.1.2 Stability of the Time-Varying System

Eigenvalues

-0.008175

-0.007534

0.001993 + 0.005386i

0.001993 - 0.005386i

(a)

Eigenvalues

-0.008955

-0.007726

0.003259 + 0.006156i

0.003259 - 0.006156i

(b)

Eigenvalues

-0.008565

-0.007534

0.004450 + 0.006626i

0.004450 - 0.006626i

(c)

Table 5.18: Eigenvalues for prescribed states while varying the hinge location in the body z direction:

(a) 0.04 m (b) -0.01 m (nominal) (c) -0.04

Examining Table 5.18 and Figure 5.23 shows very little change in the eigenvalues as the

hinge vector changes in the body z direction. One of the static modes (the largest negative

magnitude) increases in magnitude until the hinge vector is about -12 mm (the other static

mode begins moving to the right before this point). After that point all of the modes move

to the right.
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Figure 5.23: Root locus plot for varying the hinge location in the body z direction

5.7.2 Varying Hinge Location in the Body x Direction

This section alters the system parameters provided in Section 5.1 by varying the hinge

location in the body x (horizontal) direction from - 4 mm to 4 mm above the CG while

holding the body z location of the hinge constant at -10 mm.
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5.7.2.1 Periodic Trim

Variable Trim Value Average

u 0.0004324 1.1464e-05

w 0.01382 -6.8759e-06

q 0.4205 -2.1598e-07

Θ 0.05374 0.0400

κ0 0.1403

τmax 1.4671

(a)

Variable Trim Value Average

u 0.0004158 -1.2196e-12

w 0.01501 -6.8662e-06

q 0.4592 3.0978e-09

Θ 0.01387 2.6342e-12

κ0 2.5644e-13

τmax 1.4667

(b)

Variable Trim Value Average

u 0.0003537 -1.1464e-005

w 0.01623 -6.8755e-006

q 0.4878 -8.1143e-010

Θ -0.02231 -0.0400

κ0 -0.1403

τmax 1.4671

(c)

Table 5.19: Trim variables for prescribed states while varying the hinge location in the body x

direction: (a) -0.004 m (b) 0 m (nominal) (c) 0.004

Examining Table 5.19 shows that moving the hinge in the body z direction has very little

e�ect on the trim the only large e�ect being the shift of the average pitch angle and stroke

o�set to o�set the shift in the hinge vector.
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5.7.2.2 Stability of the Time-Varying System

Eigenvalues

-0.009157

-0.007457

0.003159 + 0.005989i

0.003159 - 0.005989i

(a)

Eigenvalues

-0.008955

-0.007726

0.003259 + 0.006156i

0.003259 - 0.006156i

(b)

Eigenvalues

-0.009157

-0.007457

0.003159 + 0.005989i

0.003159 - 0.005989i

(c)

Table 5.20: Eigenvalues for prescribed states while varying the hinge location in the body x direction:

(a) -0.004 m (b) 0 m (nominal) (c) 0.004

Examining Table 5.20 and Figure 5.24 shows almost no change in the eigenvalues as the hinge

vector changes in the body x direction. The largest changes are in the static modes which

move towards each other as the hinge moves towards the CG from behind and then back

to their original values as the hinge moves forward of the CG. Overall this indicates that

the movement of the hinge has little e�ect on the stability of the system in hover though it

would have a larger e�ect in forward �ight modes as this would give the aerodynamic forcing

a larger moment arm to act upon the body.
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Figure 5.24: Root locus plot for varying the hinge location in the body x direction
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Chapter 6

Conclusion and Future Work

In this thesis the in�uence of various models on the �ight dynamics of a �apping wing MAV

was investigated. In support of this an aerodynamic model and �ight dynamic model were

developed in MATLAB and combined into a single simulation model.

The kinetic energy of the system was derived using the quasi-coordinate form of La-

grange's equations with rigid wings and fuselage. The body was assumed to be an ellipsoid

while the wings were rectangular and �apped through prescribed kinematics de�ned by three

sinusoidal Euler angles.

The aerodynamic model was based on the Peters airloads model and allowed for the in-

clusion of unsteady a�ects through the addition of an in�ow model and viscous drag through

an empirical model. These models can be easily changed to allow for more complicated wake

or viscosity models. The aerodynamic forcing was validated against the quasi-steady aerody-

namic model developed by Berman [26], including viscosity as implemented by Stanford [3].

When provided with matching parameters the models were shown to be in good agreement.

For stability analysis a stroke-averaged model and periodic model were used. The stroke-

averaged model averaged the forces and mass matrix over one stroke period. The stroke-

averaged trim was calculated by the Newton Raphson method until zero-averaged forcing was

achieved for prescribed kinematics or �ight condition. This was followed by the calculation
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of a linearized stability matrix about this trim and from there stability.

The periodic system utilized periodic shooting to �nd trim, in this case calculating an end

state after one period of motion that was equal to the initial condition. The state transition

matrix about this trim then provides stability through Floquet analysis. Comparing the

stroke-averaged and periodic systems indicates that there are di�erences that make them

not completely interchangeable. A constant in�ow model and viscosity model were added to

the periodic system so that the stability could be compared to the nominal case (not including

either). While the system remained unstable with the addition of the models, it was shown

that both have a signi�cant e�ect on stability (though not necessarily trim) indicating that

for this model (and most likely this �ight regime) including both of these models is important.

Moving the hinge with respect to the center of gravity had little a�ect on hover stability but

with increased physical modeling �delity such as body drag and introducing a stroke plane

angle o�set from the body angles the hinge location could have a much larger e�ect.

For future research, inclusion of more accurate in�ow models and viscosity models as well

as more complicated physical models would give more accurate comparisons to real world

applications. The addition of �exibility to the model as well as a body drag model would

also further increase the applicability of the model to a real world simulation. A controller

could also be designed to stabilize the system.
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